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Abstract 
Genomics is an important emerging scientific field 

that relies on meaningful data visualization as a key step 
in analysis.  Specifically, most investigation of gene 
expression microarray data is performed using 
visualization techniques.  However, as microarrays 
become more ubiquitous, researchers must analyze their 
own data within the context of previously published work 
in order to gain a more complete understanding.  No 
current method for microarray visualization and analysis 
enables biology researchers to observe the greater 
context of data that surrounds their own results, which 
severely limits the ability of researchers draw novel 
conclusions.  Here we present a system, called HIDRA, 
that visually integrates the simultaneous display of 
multiple microarray datasets to identify important 
parallels and dissimilarities.  We demonstrate the power 
of our approach through examples of real-world 
biological insights that can be observed using HIDRA 
that are not apparent using other techniques. 

1 Introduction 
Scientifically meaningful data visualization is vital 

for the advancement of knowledge in many fields, 
particularly molecular biology.  Genomics is one of the 
fastest growing modern scientific disciplines, as it 
promises a better understanding of the inner workings of 
cells, is vital to understand diseases, elaborates our 
understanding of evolution, moves towards the era of 
personalized medicine, and reveals the root causes of 
cancer.  One of the most powerful new tools molecular 
biologists wield to solve these problems are gene 
expression microarrays, and the majority of microarray 
analysis is done through visualization techniques[1, 2]. 

Gene expression microarrays simultaneously measure 
the activation or suppression of every gene in a genome 
at a particular point in time.  These studies result in data 
matrices containing hundreds of thousands to millions of 
observations, and the majority of researchers rely on 
visualization tools to mine these data to discover new 

biological information.  Biologists face the challenges of 
understanding not only the data that they generate, but 
also of comprehending their results in the broader 
context of previous studies. As microarray technology 
matures, decreases in cost, and becomes more accessible, 
the number of microarray studies produced is growing 
exponentially, which further complicates thorough 
analysis. 

No existing method for microarray visualization 
enables researchers to directly understand and analyze 
their data within the greater context of previously 
published findings.  This severely limits research 
capabilities by forcing users to focus on their own data 
during the initial analysis phase and to compare with 
other studies only at later stages to confirm or contradict 
their conclusions.  Integrating the vast amount of 
available data into the analysis phase as early and 
seamlessly as possible will allow researchers to build 
upon previous results, observe inconsistencies, and form 
more powerful conclusions. 

We propose a novel methodology for the analysis and 
exploration of multiple microarray datasets 
simultaneously.  By leveraging visual paradigms that are 
commonly used for small-scale microarray analysis, our 
approach remains easily interpretable by researchers.  
Due to the sheer size of these datasets, we employ an 
“overview + detail” approach on a per-dataset basis to 
allow users to view specific genes as well as their 
context within the whole genome.  However, we extend 
this paradigm to include the larger context of additional 
available datasets as well, which we call an “overview + 
detail + setting” paradigm. 

We have implemented our approach into a system 
called HIDRA (Horizontally Integrated Dataset 
Relationship Analysis), and we have deployed this 
system to experimental genomics researchers both for 
individual use and for collaborative use on a large-format 
display device.  In the next section we discuss existing 
microarray visualization approaches in more detail.  We 
then outline our specific visualization goals and what 
techniques we use to achieve those goals.  And finally 
we show two case studies where meaningful biological 



observations have been made by researchers using our 
system. 

2 Related Work 
Existing microarray visualization tools focus on the 

analysis of single datasets, and many of these tools are 
used on a daily basis by the research community[3].  The 
majority of visual displays of microarray data fall into 
two major categories:  heat maps[4-6] and parallel 
coordinates[7].  Other approaches are also used, such as 
scatterplots, histograms, and spreadsheets, but these are 
generally complementary techniques used in conjunction 
with a heat map and/or parallel coordinate display[4, 8-
10]. 

Heat map displays traditionally show a clustered data 
matrix of values represented as colors interpolated from 
red to green.  This type of display allows a user to 
quickly identify prevalent patterns among genes in a 
dataset by looking for bands of data with similar profiles.  
These displays are often accompanied by a dendrogram 
created from hierarchical clustering, which dictates the 
order in which genes are displayed and visually encodes 
a distance metric relationship between genes. 

Heat maps have seen near universal adoption 
amongst biologists, and their results are the canonical 
representation of gene expression used in the majority of 
microarray publications.  While these displays allow the 
full matrix of data values to be viewed, the patterns and 
labels of individual genes are only visible by zooming 
into more detailed portions of the map.  Many tools 
support this type of exploration by using an “overview + 
detail” paradigm[11], where users see the entire dataset, 
but can then select a smaller region to see in greater 
detail. 

Parallel coordinate systems display genes as a 
collection of segmented lines overlaid on a measurement 
grid.  These displays have the ability to show all of the 
available data in a relatively small area.  This approach is 
also well suited for the identification of desired patterns, 
as users are able to select only those genes that pass 
through defined portions of the grid. 

While parallel coordinate views show all of the 
available data, the results can be difficult to interpret.  
When viewing a large number of genes simultaneously, 
it is difficult to distinguish one expression profile from 
another.  As with heat maps, this approach suffers from 
not being able to label individual genes within the total 
plot.  The absence of a dendrogram created from 
hierarchical clustering presents both benefits and 
complications.  The dendrogram visually indicates a 
quantitative distance metric between two genes in a 
dataset, but it also enforces an ordering and structure on 
the data that may be somewhat artificial.  Parallel 
coordinate displays do not suffer from this imposition of 

ordering, but do not visually quantify arbitrary distances 
between profiles. 

Many of the most successful microarray visualization 
approaches combine both heat map displays and parallel 
coordinates views, along with several other views of the 
same data[3].  We refer to these approaches as 
“vertically integrated” as they allow researchers to see 
the same data from many complementary angles.  These 
methods have been very successful and have gained wide 
use among the microarray analysis community. 

We propose extending the power of multiple 
simultaneous views in an orthogonal direction.  Rather 
than displaying multiple viewpoints of the same data, our 
approach displays the same type of viewpoint on 
multiple datasets at the same time -- we refer to this 
paradigm as a “horizontally integrated” approach.  This 
expansion of the amount of visualized data enables 
researchers to view a broader setting of known biology 
and place their own results within this larger context. 

3 Design & Implementation 
We established several goals for the design of our 

microarray visualization methodology that incorporates 
broader context.  The following goals are a combination 
of our initial aspirations and the desires of our research 
collaborators that used our system: 

• Ease of use.  A successful system must be usable 
and intuitive for the target audience, in this case 
biology researchers. 

• Dynamic, consistent interaction.  The approach 
must be adaptive to user input as their desire to 
explore and observe information changes over 
time, but these adaptations must feel natural to 
the user. 

• Scalability.  Our approach must scale both with 
the amount of data visualized, and with available 
screen space. 

• Biologically meaningful.  Perhaps the most 
important criteria is that a microarray 
visualization system must enable researchers to 
explore their data in a way that facilitates 
biological observations and insights. 

3.1   Single dataset visualization 
In order to maintain a baseline of usability and 

comfort with the microarray analysis community, we 
have chosen to adopt the use of heat maps accompanied 
by dendrograms as the basis for our methodology.  This 
approach is by far the most common presentation format 
for microarray data in biology literature.  For individual 
dataset display we leveraged the codebase of the 
commonly used, open-source tool, JavaTreeView[5], 
which we then modified for our purposes.  This provides 
the immediate advantage of utilizing pre-existing 



abilities and biases of the microarray research 
community.  On the level of a single dataset we also 
utilize the “overview + detail” paradigm to allow users to 
view both the entire dataset, as well as a more detailed 
view of a subset of that data.  An example of this 
visualization for a single dataset is shown in Figure 1. 

 
Figure 1 – A single dataset displayed using a heat 
map and dendrogram in an overview + detail 
format.  Rows correspond to genes and columns 
to experimental conditions.  Each intersection is 
colored on a continuous scale from green through 
black to red.  The data was hierarchically 
clustered in both dimensions.  A region of the 
dataset was selected in the overview and the 
corresponding section is shown in greater detail 
below. 

Users have several options for interacting with this 
display of information.  Subsets of genes to view in the 
detail portion can be selected by dragging a box on the 
heat map, or by choosing branches of the dendrogram.  
These selections can be refined by traversing up or down 
the dendrogram using the keyboard.  This allows users to 
isolate particular desired areas of the larger dataset to 
view with greater scrutiny. 

Due to differences in experimental technologies and 
personal preferences/abilities, it is also important for 
users to maintain control regarding the parameters of the 
heat map coloration.  In general, microarray data lies in a 
broad, noisy range of values that depends on several 

laboratory factors.  For this reason, values above/below a 
cutoff are saturated out to a maximum intensity, but this 
cutoff is not universal, and should thus default to a 
reasonable value, but be in the control of the user.  
Additionally, the color scheme used for display must be 
adjustable by the user.  The red/green gradient is 
commonly employed because it has a direct link to the 
chemical dyes used in microarray experiments, however 
such a scheme is clearly unacceptable for color-blind 
researchers. 

3.2   Multiple dataset visualization 
Several factors are important to consider when 

incorporating additional datasets into microarray 
visualization.  The common features of microarray 
datasets are genes, while the experimental conditions 
vary between datasets, which indicates that between 
dataset comparisons should be visible on a per-gene 
basis.  However, microarray datasets are often created 
using disparate technologies or experimental practices, 
and individual datasets are generally targeted to 
investigate a specific area or process, which indicates 
that information such as clustering and normalization are 
appropriate only on a per-dataset basis. 

In order to address these biological requirements, we 
have developed an approach we refer to as “overview + 
detail + setting”.  On the level of each dataset it is vital to 
observe both the entire dataset (overview) as well as 
more specific information (detail).  However, for the 
larger goal of placing an individual researcher’s data in 
the greater context of available data, datasets must be 
linked together (setting).  In particular, we applied this 
approach to microarray data with the goal of making 
comparisons between datasets as intuitive as possible, 
while maintaining important per-dataset information. 

The most common paradigm in microarray literature 
is for the expression of genes to correspond to rows of a 
visualized data matrix.  As genes are the common 
element of interest between datasets, we place the 
datasets next to each other horizontally to preserve gene-
row orientation across all data.  However, the ordering of 
genes is determined by clustering, and the clustering 
process is biologically meaningful on the level of 
individual datasets.  To address these issues, we have 
synchronized the detail views across all datasets to 
facilitate comparisons, while preserving the cluster order 
of individual datasets in the overviews. 

By synchronizing the detail views, we preserve the 
expectation that gene measurements are aligned along 
rows, even across multiple datasets.  The order of the 
genes shown in the detail views corresponds to the order 
of those genes in the dataset where the selection was 
made.  To provide information about the per-dataset 
context of the selected genes, a thin line is displayed in 



 
Figure 2 – A selection of disparate datasets viewed in HIDRA.  Six different datasets are shown here 
tiled horizontally.  Each dataset was individually hierarchically clustered in both dimensions.  A 
selection has been made in the rightmost dataset (from a nutrient limitation study[12]) and the thin 
light blue lines in the left five datasets (from a stress response study[13]) indicate where these genes 
are located in their overviews.  A user can quickly observe that the selected genes are non-randomly 
grouped in the clustering of the other datasets.  Further inspection of the aligned genes in the detail 
views shows cases where these genes are behaving similarly/differently. 

each dataset’s overview to indicate where each selected 
gene falls within that dataset.  An example of this 
multiple dataset visualization is shown in Figure 2.  
The gene-level synchronization of the detail views 
enables low-level comparisons of a gene’s specific 
behavior in different datasets; while in the overviews, 
the selection highlights indicate a higher-level 
comparison of gene group relationships between 
datasets. 

For example, a user can select a tight group of 
genes in one dataset, and immediately observe how 
those genes cluster together in every other dataset at a 
general level.  A researcher can then examine the detail 
views to investigate the specific expression levels that 
led to the observed global patterns.  This type of 
exploratory analysis across a large amount of diverse 
datasets is impossible with existing tools, but is vital 
for experimental microarray analysis, as we 
demonstrate in our validation. 

3.3   Scalability, interactions, and interfaces 
The inclusion of multiple datasets also requires 

addressing scalability, interaction and user interface 
concerns[14].  First, as more data is viewed 
simultaneously, screen space quickly becomes an issue.  
While several datasets can be viewed at once on even 
the smallest desktop/laptop displays, users may be in 
situations where they still feel limited.  By default, 
when enough datasets are loaded to overflow the 
available display space, a scrollbar becomes active to 
pan between datasets.  We also provide the ability to 
dynamically re-order, remove, and/or add new datasets 
as the researcher explores their data.  In this manner 
users can choose the most relevant datasets to occupy 
the visible area as their needs change over time. 

Another option to see more data is to move to 
large-scale display devices if they are available to the 
user[15-17].  Our approach scales very well to large-
format devices by providing control over text size, 
column widths, row heights, etc (Figure 3).  Using 
displays of this magnitude allows users to see as much 



as an order of magnitude more data at once.  These 
very high-resolution displays are also helpful for 
collaboration, which is very common among 
microarray analysts. 

Regarding the user interface, several visualization 
choices must be made on a per-dataset basis.  In 
particular, the desired color scale, saturation cutoffs, 
dendrogram widths, etc. often vary greatly from one 
dataset to another, due to technological and 
experimental differences.  We provide controls to alter 
all of these parameters for any selected subset of 
datasets, including the individual level.  Further, we 
store these choices on a per-dataset basis, so that as 
users re-order, remove, and/or re-load data these per-
dataset choices remain intact. 

 

Figure 3 – A group of collaborators using HIDRA 
on the large-scale display wall at the Lewis-
Sigler Institute for Integrative Genomics.  This 
display is capable of simultaneously showing an 
order of magnitude more data than traditional 
desktop/laptop displays, which is helpful when 
dealing with very large data repositories. 

Further, some interactions should be consistent 
from one dataset to the next.  In order to preserve the 
gene-row alignment of the detail views, the heights of 
each panel are slaved to any panel being resized, such 
that all detail views maintain the same height.  
Additionally, scrolling in any detail view causes 
synchronous scrolls in all detail views to maintain 
consistency. 

3.4   Implementation 
We have implemented these methods into a Java-

based system called HIDRA. The use of Java as a 
development language allows us to more easily 
produce a cross-platform result, which is of particular 
importance to the biology community, who use a 
variety of operating system platforms.  Among our 
immediate collaborators, individuals use Windows, 
Macintosh, and Linux operating systems to perform 

their analysis.  The Java language also easily permits 
future expansion of our approach to include additional 
features, which is vital as genomic research is rapidly 
evolving. 

4 Validation 
The ultimate validation of a scientific data 

visualization approach is its usefulness and adoption 
within the research community.  In particular, a 
successful approach should aid in the discovery of 
novel biology.  We are working with many 
collaborators spread across five laboratories to assess 
how our multiple dataset visualization approach aids 
their research as well as how to improve HIDRA.  We 
have deployed our system for these users both on their 
own desktop/laptop machines and on the large-scale 
shared display wall at the Lewis-Sigler Institute for 
Integrative Genomics at Princeton.  While we are still 
receiving feedback from these users, here we discuss 
two of the user experiences that led to biological 
insights made using our approach.  These examples 
demonstrate the power of our technique as these 
observations could not be easily made using any 
previously existing methodology. 

4.1   User experience #1 – Stress response 
effects in yeast 

One scientist using our system is interested in 
studying stress response and growth rate effects in 
yeast.  By utilizing our multi-dataset visualization 
capabilities applied to several existing datasets, she 
was able to draw several novel, biologically 
meaningful conclusions.  She was able to 
simultaneously examine the expression levels of genes 
in a set of standard stress response datasets[13] as well 
as results from a nutrient limitation study[12] and a 
collection of gene knockout experiments[18].  The 
biological question this user wished to examine is 
whether or not the traditional global stress response 
signal is present in other types of data. 

Using our approach, she was able to easily find and 
select clusters of genes in the nutrient limitation and 
knockout studies that she suspected may be the result 
of a stress response effect, and then examine how those 
genes related to each other within the standard 
collection of stress datasets (see Figure 2).  Performing 
this type of analysis is simple in our multiple dataset 
approach; however, using previously existing 
techniques we would need to launch over a dozen 
independent instances of a program and continually cut 
and paste selections between instances, rendering such 
analysis practically impossible. 

Our collaborator identified several groups of genes 
in these datasets that exhibited a strong pattern of 



correlation within the stress response datasets as well.  
This suggests that the effect on gene expression of 
various nutrient limitations and gene knockouts may be 
superceded by the more general stress response effect.  
Our collaborators are currently performing further 
analysis, both in the lab and with our visualization 
system to better characterize this phenomenon.  Thus, 
by observing the relationships between these very 
different datasets in HIDRA, this scientist quickly 
identified unexpected commonalities that may prove 
biologically interesting. 

4.2   User experience #2 – Cell cycle 
synchronization effects 

A second example of an important observation was 
made by another biologist using HIDRA to investigate 
disparities among related datasets.  In this case the 
scientist was examining several datasets all purportedly 
studying the same phenomenon, the yeast cell cycle.  In 
particular, two studies used a variety of means to 
synchronize cell populations to create time courses of 
gene expression throughout the phases of the cell 
cycle[19, 20]. 

A group of genes in one of these time courses were 
tightly clustered with very high over-expression at 
early points of the time course.  However, using 
HIDRA we could quickly see that these genes were 
largely unrelated in the other time courses, and during 
the early time points they were not over-expressed in 
the datasets produced from other means of 
synchronization (see Figure 4). 

Upon further inspection, a significant number of 
these genes are known to be involved in cell 
conjugation and mating.  The time course where these 
genes are tightly clustered was synchronized by 
exposing the cell population to a pheromone that 
induces a mating response, which halts cell cycle 
progression.  Our collaborator quickly realized that the 
expression response seen in these early time points was 
an artifact of the synchronization method, rather than a 
change caused by the cell cycle.  In this case, observing 
differences between datasets studying the same 
phenomenon helped focus efforts on important portions 
of the datasets. 

4.3   Discussion 
The two examples described above are 

representative of the types of interactions users have 
had with HIDRA.  By quickly observing 
commonalities among disparate datasets collaborators 
have been able to identify common trends that could 
indicate meaningful relationships between 
experimental conditions.  Conversely, by finding key 
differences between related datasets users can explore 

phenomena unique to particular assays.  This type of 
exploration allows microarray researchers to quickly 
make key insights and form hypotheses that would be 
difficult to make viewing the data independently. 

Figure 4 – Biological exploration of differences 
among three cell cycle datasets displayed in 
HIDRA.  In this case, three time courses 
studying the same phenomenon from two 
studies [19, 20] are shown.  A group of genes 
with very high over-expression at early time 
points is selected in the leftmost dataset, but 
these genes show little relationship to one 
another in the other two time courses.  Further 
study revealed that the over-expression of these 
genes in the left dataset was an experimental 
artifact. 

5 Conclusions 
We have presented a novel methodology for the 

concurrent analysis of multiple gene expression 
microarray datasets.  Our approach allows researchers 
to understand how their own data relates to data 
previously published in the literature, which is vital for 
continued analysis.  By exploring the larger context of 
available data, users can overcome the limitations of 
existing approaches for higher-level analysis of their 
own data.  Observing a more global view of expression 
data allows biologists to make more insights and 
formulate novel hypotheses. 

Our approach to the inclusion of greater data 
context is based on expanding common visualization 
practices to create an “overview + detail + setting” 
system.  We include the concept of the greater 
information setting by horizontally integrating and 
linking separate overview and detail views for 



individual datasets.  This type of data integration – 
inclusion of multiple parallel views – is in contrast to 
the integration of a variety of viewpoints based on the 
same underlying data, which we call a vertically 
integrated approach. 

Although we apply the concepts of including a 
broader setting of information through horizontal 
integration to a specific solution for microarray 
visualization, these principles are much more general.  
For example, a system similar to HIDRA for 
microarray analysis could be created based on parallel 
coordinates, rather than heat maps.  Horizontally 
incorporating additional datasets into a system based 
on vertically integrated multiple views could 
potentially provide both the benefits of more complete 
understanding of single datasets and the benefits of 
understanding the greater information context. 

The concept of visualizing the broader setting of 
available data is vital for future analysis and 
comparisons within the biology community.  We have 
shown real-world examples of insights that can be 
made using our approach for microarray visualization 
that are difficult or impossible to discover using 
existing techniques.  We believe integrating additional 
datasets into visualization systems is a powerful 
paradigm not only for genomics data, but potentially 
for many other disciplines as well. 
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