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Research

Integrative phenomics reveals insight into the structure
of phenotypic diversity in budding yeast
Daniel A. Skelly,1 Gennifer E. Merrihew,1 Michael Riffle,2 Caitlin F. Connelly,1

Emily O. Kerr,1 Marnie Johansson,1 Daniel Jaschob,2 Beth Graczyk,2 Nicholas J. Shulman,2
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Trisha N. Davis,2 Maitreya J. Dunham,1,8 Michael J. MacCoss,1,8 and Joshua M. Akey1,8
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To better understand the quantitative characteristics and structure of phenotypic diversity, we measured over 14,000
transcript, protein, metabolite, and morphological traits in 22 genetically diverse strains of Saccharomyces cerevisiae. More
than 50% of all measured traits varied significantly across strains [false discovery rate (FDR) = 5%]. The structure of
phenotypic correlations is complex, with 85% of all traits significantly correlated with at least one other phenotype
(median = 6, maximum = 328). We show how high-dimensional molecular phenomics data sets can be leveraged to ac-
curately predict phenotypic variation between strains, often with greater precision than afforded by DNA sequence
information alone. These results provide new insights into the spectrum and structure of phenotypic diversity and the
characteristics influencing the ability to accurately predict phenotypes.

[Supplemental material is available for this article.]

Considerable progress has been made in characterizing genomes,

allowing comprehensive insights into patterns of genetic diversity

in many organisms (Liti et al. 2009; The 1000 Genomes Project

Consortium 2010; Gan et al. 2011; Keane et al. 2011; Tennessen

et al. 2012). However, interpreting the functional and phenotypic

consequences of genetic variation remains challenging and is ex-

acerbated by the paucity of data on the quantitative characteristics

of phenotypes. One approach to bridge the gap between genetic

variation and organismal phenotypes is the comprehensive and

systematic collection of carefully measured phenotypes, an ap-

proach referred to as phenomics (Schork 1997; Freimer and Sabatti

2003; Houle et al. 2010). To date, phenomics studies have often

studied a moderate number of phenotypes or have been limited to

only a single individual (Warringer et al. 2003, 2011; Kvitek et al.

2008; Ratnakumar et al. 2011; Chen et al. 2012). However, ad-

vances in functional genomics technology, instrumentation, and

computational biology are providing the necessary tools to ex-

tensively phenotype increasingly large collections of individuals.

Here, we describe a comprehensive phenomics data set con-

sisting of over 14,000 molecular and morphological traits collected

in 22 genetically diverse yeast strains. More specifically, we mea-

sured gene expression, protein and metabolite abundance, and

quantitative morphological phenotypes in isolates of S. cerevisiae

sampled from six continents and a wide variety of microenviron-

ments (Supplemental Table 1). Although previous studies have

reported measurements of one or two of these data types in sam-

ples derived from a smaller number of strains (e.g., Nogami et al.

2007; Foss et al. 2011; Xu et al. 2011), our study is the most com-

prehensive data set of multiple molecular and morphological

phenotypes measured simultaneously in a large number of strains.

These data reveal new insights into the patterns, structure, and

determinants of phenotypic variation and provide a powerful re-

source to enable a deeper understanding of the principles gov-

erning the relationship between genotypes and phenotypes.

Results

High-dimensional phenotyping and genome sequencing

To comprehensively measure molecular and morphological phe-

notypes while mitigating confounding variables, we used a ran-

domized study design and obtained biological replicates for each

measured trait (Fig. 1). Previous studies have shown a large, generic

gene expression, protein, and metabolite response correlated with

even small changes in growth rate (Regenberg et al. 2006; Castrillo

et al. 2007; Brauer et al. 2008), which we were concerned might

overwhelm other aspects of phenotypic variation. Therefore, to

control for growth rate variation among strains and maintain

a constant external cellular milieu, we grew strains to steady state

in chemostats under phosphate-limited conditions. For each

sample, we performed RNA-seq to characterize gene expression

and transcript structure (N = 6702 transcripts); chromatography

and mass spectrometry to measure protein (N = 6842 peptides) and

metabolite (N = 115 metabolites) abundances; and quantitative

microscopy to measure morphological phenotypes (N = 398 traits)
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(Fig. 1). Across all samples combined, we obtained ;13.2 Gb of

uniquely mappable genome sequence (equivalent to more than

10003 coverage of the genome) and 38.6 Gb of uniquely mappable

transcript sequence. We conducted extensive quality control and

normalized for technical effects (Supplemental Figs. 1, 2; Supple-

mental Table 2) and found that the data were highly reproducible,

with median correlations between biological replicates exceeding

0.97 for RNA-seq and morphological trait measurements, 0.87 for

quantitative proteomics, and 0.81 for metabolomics data.

In addition, we resequenced the genome of each strain to

high coverage (mean approximately 303). These data supple-

mented existing low-coverage Sanger sequence data (Liti et al.

2009) and allowed us to call additional single nucleotide poly-

morphisms (SNPs), map RNA-seq reads in an unbiased fashion,

and identify peptides expected to differ in amino acid sequence

between strains. Concordance with previously published Sanger-

based sequences (Liti et al. 2009) was >99.5% for all strains. Pre-

vious low-coverage sequencing (Liti et al. 2009) reported approx-

imately 230,000 SNPs (20,000–80,000 SNPs per strain) in these

strains relative to the S. cerevisiae reference sequence (S288c); our

high-coverage short-read sequencing yielded an additional 50,000

SNPs (1500–44,000 per strain). An analysis of sequences imputed

by Liti et al. (2009) using a phylogenetically motivated approach

revealed significant discrepancies with our sequence data (Sup-

plemental Note), highlighting the difficulty of accurately imput-

ing sequence in a model organism with complex and heteroge-

neous patterns of population structure.

Pervasive phenotypic diversity

We found widespread heritable variation within every class of

phenotypic data measured, with >50% of all measured traits

varying between strains. Specifically, 74% (4565) of transcript

levels, 23% (1553) of peptides, 10% (12) of metabolites, and 64%

(255) of morphological traits significantly varied [false discovery

rate (FDR) = 5%] across strains. Following Nogami et al. (2007), the

morphological traits that we tabulated included both directly

measured traits and their coefficient of variation (CV). We found

more directly measured traits differed between strains (151/199)

than CV traits (104/199).

Among transcript and protein levels, genes that varied most

across strains were involved in aerobic respiration and the electron

transport chain, with highly significant gene ontology enrichment

(P < 10�5) for cellular respiration, ATP synthesis coupled proton

transport, and mitochondrial respiratory chain complexes (Sup-

plemental Table 4). Indeed, we found consistent differences be-

tween strains in the overall activity of central carbon metabolic

pathways, reflecting contrasting strategies for energy generation

(Fig. 2A). The strong anticorrelation between the activity of genes

involved in fermentation versus aerobic respiration was largely,

though not entirely, associated with the major phylogenetic di-

vision between the strains (Fig. 2B); strains involved in the pro-

duction of alcoholic beverages as well as their close relatives tended

to be more active fermenters.

We examined each differentially abundant metabolite in the

context of 162 well-annotated biochemical pathways. Overall,

metabolites were significantly correlated (FDR = 5%) with a large

number of pathways (mean = 58, standard deviation = 30), con-

sistent with the highly interconnected nature of metabolism. The

metabolite ribose (due to the derivatization process, this mea-

surement included both free ribose and ribose-5-phosphate) was

significantly correlated (FDR = 5%; |r| > 0.43) with the largest

number of pathways, 96. Ribose-5-phosphate is produced by the

pentose phosphate pathway and required for nucleotide bio-

synthesis, and the activity of these pathways and the corre-

sponding ribose/ribose-5-phosphate levels varied across strains

(Fig. 2C). At the morphological level, we observed consistent,

heritable differences in traits related to cell size (Fig. 2D; Supple-

mental Fig. 3).

Identifying large-effect cis-regulatory transcript and protein
quantitative trait locus (QTL)

To search for genomic variants underlying variation in functional

genomics phenotypes, we performed association tests between

variants within 500 bp of each gene and its corresponding tran-

script and peptide levels. Although the number of individuals

sampled is small (N = 22), simulations indicate that we have

moderate to high power to detect large-effect variants (Supple-

mental Table 5). We focused on common variants near the gene of

interest, which presumably act primarily in cis to influence tran-

script and protein levels because complex patterns of population

structure in S. cerevisiae render genome-wide association studies

susceptible to a high type I error rate (Connelly and Akey 2012).

Before performing association tests, we controlled for population

structure using mixed models and selected tag SNPs with r 2 > 0.6

(Supplemental Note). We found 64 significant peptide-SNP asso-

ciations (from 42 distinct proteins) and 302 significant transcript-

SNP associations (FDR = 5%) (Fig. 3A). Genetic variants underlying

associations have large effects, explaining on average over half

(53%) of the variation in peptide or transcript level. Thus, large-

effect transcript and protein QTL are relatively common in natural

populations of yeast. Variants associated with transcript or protein

levels were found in promoters, 39 untranslated regions (UTRs),

and genes, without a significant enrichment of any location type.

Figure 1. Experimental design facilitates high-dimensional phenotyp-
ing. A schematic of the experimental design used to obtain phenotypic
data for the 22 strains. Icons next to strains show examples of sources
from which strains were isolated (Supplemental Table 1). The schematic
outlines the process of obtaining phenotype data for a single strain. In
total (aggregated across all strains), we obtained 16 Gb of DNA sequence;
820 million RNA-seq reads; 912,000 mass spectra that we used to infer
peptide levels; metabolic measurements of molecules in 40 different
biochemical pathways; and 2000 images that together captured 21,000
cells, whose morphological characteristics we tabulated.
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Of the 69 significant transcript associations that also had

peptide data, six had at least one significant peptide association. Of

these six, five were associated with the same SNP as the transcript

association, consistent with variants that affect transcript level and

thus indirectly affect protein level. Figure 3B shows one such ex-

ample in the gene PPN1, an endopolyphosphatase involved

in phosphate metabolism. The absence of a significant peptide

association in 63/69 transcript associa-

tions suggests that the heritable basis of

regulatory variants influencing transcript

and protein levels is largely distinct (Foss

et al. 2011; Ghazalpour et al. 2011). Al-

ternatively, the lack of a significant asso-

ciation at both the transcript and protein

level may simply reflect a lack of statisti-

cal power. To investigate these two hy-

potheses, we estimated the fraction of

truly significant peptide associations

among the set of genes with significant

transcript associations using a conserva-

tive method based on the distribution of

P-values (Fig. 3C; Storey and Tibshirani

2003). We estimate that 53% of these

peptides have a true association; thus,

a substantial fraction of large-effect vari-

ants that influence transcript levels also

affect peptide levels.

Densely connected network structure
of phenotypic correlations

To explore the correlation structure

among traits, we calculated pairwise cor-

relation coefficients among 8365 pheno-

types (collapsing all peptide measure-

ments into a single mean number for

each protein) and identified 68,558 cor-

relations, involving a total of 7078 phe-

notypes, which were significant at an

FDR of 5%. Approximately 60% (41,649)

of the trait comparisons were positively

correlated. The excess of positive correla-

tions is partially attributable to the fact

that transcript and protein levels of genes

in the same pathway or protein complex

tend to be positively correlated (mean r =

0.12 across n = 427 pathways and protein

complexes), but those from different

pathways are equally likely to be nega-

tively as positively correlated (mean r =

0.008). Overall, there were strong corre-

lations both within (79%) and between

(21%) data types, with a particularly

dense set of connections within and be-

tween highly correlated transcripts and

proteins (Fig. 4A).

Of the 7078 phenotypes correlated

to at least one other trait, the mean num-

ber of significant correlations to other

traits was 19.4 (bootstrap 95% confidence

interval 18.6–20.2). On average, transcript

levels were correlated with the largest

number of other traits (20.4) and metabolite levels the fewest

(12.0). The single most highly correlated phenotype was the

histidine tRNA synthetase HTS1 transcript, which was correlated

with 328 other phenotypes from all four data types but consisting

largely of other transcript levels (N = 293). Among the 50 most

highly correlated transcript and 50 most highly correlated protein

levels, we observed strong enrichment for genes involved in

Figure 2. Pervasive heritable phenotypic variation. (A) Overview of central carbon metabolism, with
heatmaps indicating pathway activity by strain. Transcript and protein data for genes in each pathway
was combined, the first principal component extracted, and the numerical sign adjusted to ensure
higher numbers corresponded to higher average transcript and protein abundance across the pathway.
Order of strains is listed under the fermentation heatmap. (B) Phylogeny based on complete genome
sequences, with strain names colored according to the key shown. Tan arrows indicate strains used in
the fermentation of alcoholic beverages. Pathway activity for strains was calculated as in A, using genes
in the tricarboxylic acid cycle (TCA cycle) and involved in fermentation. (C ) Pathways leading to the
production of phosphoribosyl pyrophosphate (PRPP) from glucose-6-phosphate, with pathway activity
displayed vertically for 21 strains (Supplemental Note). Arrows represent pathway activity calculated as
in A, with longer arrows/green indicating higher activity and shorter arrows/magenta indicating lower
activity. Arrows on left indicate pathway activity of the oxidative branch of the pentose phosphate
pathway, and on right activity of 5-phospho-ribosyl-1(alpha)-pyrophosphate synthetase, the het-
eromultimeric complex that synthesizes PRPP. Circles represent measurements of ribose/ribose-5-
phosphate and are colored and sized accordingly. (D) Differences in mother cell size between a small
and large strain. Histograms are composed of measurements made on individual cells. Inset photos
show a typical cell from each strain (with size near the strain mean). White scale bars show ;2 mm.
Actin stain is shown in red, DNA stain in blue, and cell wall stain in greyscale in the merged images.

Skelly et al.
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energy generation, the mitochondrial respiratory chain, and ATP

synthesis (Supplemental Table 6). Transcripts and proteins with

cis-regulatory QTL were correlated with a significantly higher (P <

0.001 for both tests) number of phenotypes (mean 33.1 and 35.9,

respectively) than those without associations (mean 19.7 and 15.3,

respectively).

Previous studies in a diverse complement of organisms

have reported widely varying levels of RNA-protein correlation

(Greenbaum et al. 2003; de Sousa Abreu et al. 2009; Schwanhäusser

et al. 2011). These studies have largely measured RNA-protein

correlation between different genes within an individual, whereas

we sought to measure RNA-protein correlation between indi-

viduals (strains) on a gene-by-gene basis (Foss et al. 2011). Our

measurements of transcript and protein levels used aliquots of cells

taken from the same chemostat sample, minimizing environ-

mental/batch effects that could lower correlations. We found

a modest correlation (median 0.33; Spearman’s r), with 44% (728

of 1636 genes with RNA and protein data) of genes having a sig-

nificant positive correlation (FDR = 5%). However, restricting

the analysis to genes with a significantly differentially expressed

transcript and with at least one differentially abundant peptide

increased the median Spearman correlation to 0.50 and resulted in

;85% of genes having a significant RNA-protein correlation (FDR =

5%); (Fig. 4B). Genes with the highest RNA-protein correlations

were strongly enriched for TATA box-containing genes (Fig. 4C).

TATA-containing genes show greater variability in transcript and

protein abundance between strains compared to TATA-less genes

(t-test, P < 1 3 10�5). Thus, the larger variation among strains in

these genes likely dominates measurement variation, resulting in

stronger RNA-protein correlations. Alternatively, TATA-containing

genes may be subject to less post-transcriptional regulation than

TATA-less genes. Nevertheless, the relatively modest overall cor-

relations between transcript and protein levels point to a sub-

stantial role for post-translational modifications and protein deg-

radation in the control of steady-state protein abundances (Foss

et al. 2011; Vogel and Marcotte 2012).

Integrative phenomics facilitates the prediction of phenotypes

The ability to accurately predict phenotypes would have profound

consequences for basic and biomedical science (Zbuk and Eng

2007; Ng et al. 2009; Gonzaga-Jauregui et al. 2012), yet remains

a challenging problem. We first predicted all RNA, protein, me-

tabolite, and morphological traits in each single strain using sim-

ple models in which predicted phenotypes in the ith strain were

a linear function of the phenotype in its closest relative (Supple-

mental Note) and the mean across other strains. These models

accurately predict transcript, protein, and metabolite levels (me-

dian R2
adj across strains = 0.97, 0.88, and 0.89, respectively) as well

as morphological traits (median R2
adj across strains > 0.99). How-

ever, although this analysis captures relative differences in abun-

dance between genes within individuals, it does not robustly predict

variation in abundance between individuals for a particular trait

(Fig. 5A shows this in the context of gene expression levels).

To address this problem, we leveraged the complex correla-

tion structure of our data set (Fig. 4A) to predict interstrain varia-

tion for all 5494 phenotypes that vary significantly between strains

(with peptide measurements collapsed into a single mean number

for each protein). To perform prediction, we used random forest

regression, a statistical technique that allows for complex and

Figure 3. Cis-regulatory transcript and peptide QTL. (A) Manhattan plot showing results for significant (FDR = 5%) transcript and peptide cis-association
tests. Gray vertical lines indicate individual tests. Blue boxes and associated roman numerals across the middle of the panel indicate the 16 chromosomes of
yeast. (B) Transcript and peptide levels association with the same polymorphism. Light blue ticks along gene model indicate locations of tag SNPs tested for
association. Transcript and peptide levels are significantly associated with the first SNP. Yellow gradient originating at first SNP expands to boxplots of
transcript and peptide levels separated by allele; boxes indicate lower quartile, median, and upper quartile, and whiskers extend to half the interquartile
range. (C ) Histogram of P-values for 236 peptide associations in 69 genes with significant transcript associations.

The structure of phenotypic diversity in yeast
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nonlinear interactions among predictor variables, and measured

variation explained for each phenotype using out-of-bag data,

which provide an unbiased estimate of error (Breiman 2001).

Specifically, we sequentially withheld each strain, recalculated

phenotypic correlations, and used only highly correlated (FDR =

5%) phenotypes as predictor variables in separate random forest

regression models for each phenotype (for example, orange lines in

Fig. 5B show phenotypes highly correlated with the abundance of

the Tim11 protein). Across all phenotypes, our predictions can

account for a median of 30% of variation (Fig. 5C, black line); and

for 28% of phenotypes (1545), our predictions explain at least 50%

of variation. For example, we can account for 86% of variation in

abundance of the Tim11 protein, which is a subunit of the mito-

chondrial F1F0 ATPase required for ATP synthesis (Fig. 5C inset,

black points). Other well-predicted phenotypes were highly

enriched for mitochondrial and ribosomal functions (Supple-

mental Table 7). However, for 1984 (36%) of phenotypes, our

predictions failed to explain >10% of variation, indicating that

information beyond values of correlated traits is necessary for ro-

bust predictions.

To explore how informative additional predictors could be,

we incorporated functional annotation data available for a subset

of the phenotypes we measured into our model. Specifically, we

considered variation in 1303 transcript and 660 protein levels that

differed significantly between strains, using an approach similar to

the above with the addition of approximately 1000 heterogeneous

predictor variables. Additional predictors included transcript and

protein levels of other genes with similar functions, genic char-

acteristics, sequence features, and pathway annotations (Supple-

mental Fig. 5). We ran the model on data from all transcripts or all

proteins simultaneously and found that our predictions explained

;45% of the variation in both transcript (median 46.8%) and

protein (median 44.8%) levels, significantly better than the ;36%

(median 37.0% and 35.6%, respectively) of variation explained

using correlated traits alone (Fig. 5D). In some cases, the difference

in prediction accuracy was dramatic: For 98 (6%) phenotypes,

predictions using correlated traits alone explained <10% of varia-

tion, but the inclusion of additional covariates increased accuracy

to >40% of variation explained. Nevertheless, there were some

phenotypes we remained unable to predict accurately: For 20% of

transcripts and 17% of proteins, our predictions explained less

than one-fifth of the variation between strains.

For both transcript and protein predictions in our expanded

model, the most informative predictors were the correlation-based

predictions (above) and abundance of the opposite data type (RNA

or protein) for the gene in question, followed by strain and RNA/

protein levels in other closely related strains (Supplemental Table

8). The presence of a TATA box was associated with better-predicted

genes; we could explain more than half of the variation on average

in transcript (median 54.6%; N = 343) and protein levels (median

55.1%; N = 211) for TATA box-containing genes (Fig. 5E). Pre-

dictions for the same TATA box-containing genes using the

method above (without additional predictor variables) explained

a median 41.7% of the variation, reinforcing the notion that these

predictors can substantially improve prediction accuracy, at least

for some subsets of phenotypes. To explore the predictive power of

DNA sequence alone, we predicted variation in transcript and

protein levels using only sequence and annotation information.

Specifically, we used genic characteristics, sequence features, and

pathway annotations as predictor variables, and found that we

were able to explain far less variation: a median 24.6% across all

transcripts and 21.7% across all proteins.

Moreover, we also implemented targeted models for specific

pathways and protein complexes whose steps and constituents are

well understood. We were able to make highly accurate predictions

in some cases, explaining at least 75% of the variation for half or

more of measured transcript and protein levels in pathways in-

cluding ATP synthesis and the electron transport chain, trehalose

biosynthesis, glycogen catabolism, and protein levels of the RNA

polymerase I complex. We also constructed models to predict

metabolites that differed in abundance between strains using

genes in biochemical pathways known to involve the metabolite.

For some metabolites (e.g., ribose/ribose-5-phosphate, trehalose),

we achieved high predictive accuracy, explaining >50% of the

variation in metabolite levels (Fig. 5F), but other metabolite levels

were poorly predicted, probably due to the influence of numerous

pathways on metabolic flux.

Figure 4. Dense network structure of phenotypic correlations. (A) Hive
plot showing network composed of highly correlated phenotypic traits.
Nodes arrayed along the three axes represent individual phenotypes,
colored by data type as indicated. Lines drawn between nodes indicate
a significant correlation between the two phenotypes. Black lines indicate
connections within the same data type, and gray lines indicate connec-
tions between data types. (B) RNA-protein correlations for 542 genes with
differentially expressed transcripts and at least one differentially abundant
peptide. radjusted indicates a correlation calculated by subtracting from the
true correlation the mean of correlations calculated from 1000 randomly
reshufflings of the data. Vertical red dotted line is drawn at 0. (C ) Fraction
of genes containing a TATA box as a function of RNA-protein correlation.
Each point plotted shows the fraction of genes with a TATA box among
a bin of approximately 80 genes with similar RNA-protein correlations (bin
means are labeled on the x-axis).

Skelly et al.
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Figure 5. Integrating data to predict phenotypes. (A) Simple models can accurately predict gene expression levels when compared between genes (left,
predictions for n = 5385 genes in strain YPS606 are shown), but do not fully capture variation between strains at a specific gene (right inset, gene expression
levels for MUC1 are shown for all 22 strains, with YPS606 highlighted in blue; units on y-axis are same as at left). At the MUC1 locus, predicted values (X’s)
are clustered around the mean expression across strains (gray dotted line), but observed values (circles) diverge substantially. Observed RPKM values have
been normalized (Supplemental Note). (B) Hive plot arranged identically to Figure 4A, with orange edges indicating connections to the node representing
abundance of the Tim11 protein (blue arrow). (C ) Empirical cumulative distribution function (CDF) displaying predictive accuracy for correlation-based
phenotype predictions. Black line indicates CDF for predictions made using all phenotypes, and orange line for predictions made using only 1000 tag
traits. Inset shows predictions for abundance of the Tim11 protein made using all traits (black dots) and tag traits only (orange dots). (D) Smooth scatter
plot comparing performance of prediction models discussed in the text. Darker blue indicates higher density of points, and lighter blue indicates lower density.
Dotted red line is drawn at y = x. (E ) Boxplot indicating percent variation explained for models of transcript and protein levels. Boxes indicate lower quartile,
median, and upper quartile, and whiskers extend to half the interquartile range. (F ) Model for predicting levels of the metabolite trehalose, which is synthesized
by the trehalose-phosphate synthase complex. Heatmaps show relative levels of transcript, protein, or metabolite, with blue circles, orange squares, and pink
triangles distinguishing between data types. Each heatmap is arranged with the strains ordered left to right in the order shown at bottom.
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Just as tag SNPs can be used to capture a large fraction of ge-

netic variation with a small number of SNPs, a relatively small

number of phenotypes (which we term tag traits) can capture

a significant fraction of phenotypic variability. We implemented

a simple greedy algorithm to identify tag traits highly correlated to

many other phenotypes. Using only the top 1000 tag traits (12% of

the data), we were able to explain at least 50% of variation in 975

(18%) phenotypes that differed significantly between strains

(Fig. 5C, orange line). Abundance of the Tim11 protein was well-

predicted using tag traits (Fig. 5C, inset, orange points), and well-

predicted phenotypes were enriched for largely identical functions

as those predicted without the aid of tag traits (Supplemental

Table 7). Among the 2569 phenotypes for which the full models

explained at least one-third of the variation among strains, tag trait

models explained a median 79.1% of variation explained using all

traits, indicating that tag traits can make use of a relatively small

portion of the data to capture a significant fraction of variability

between strains.

Discussion
The extensive phenomics data set described here provides new

insights into the structure and characteristics of phenotypic

diversity and highlights the information available in deep

phenotyping across many strains. We observed pervasive phe-

notypic diversity, with a substantial fraction of phenotypes

varying between strains for each data type. Many of the differ-

ences between strains occurred in pathways and networks re-

lated to cellular respiration, fermentation, and mitochon-

drial function, likely driven by both adaptations to ecological

niche and interactions with humans (e.g., strains involved in

the production of alcoholic beverages) (Fig 2B). In addition, we

found several hundred cis-regulatory QTL that influence levels

of transcripts or peptides, demonstrating that many large-effect

regulatory polymorphisms segregate in natural populations of

yeast. A substantial proportion of regulatory QTL act at both the

transcript and peptide level, suggesting that the genetic basis of

transcript and protein levels may overlap to a greater extent

than previously thought (Foss et al. 2011; Ghazalpour et al.

2011).

Furthermore, we show that the structure of phenotypic

correlations can be exploited to predict variation in phenotypes

between strains. Tag traits, which we define as phenotypes be-

longing to a relatively small collection of traits that can capture

a significant fraction of phenotypic variability, may be a useful

way to conceptualize the state of a cell within a relatively low-

dimensional space. Our limited ability to predict phenotypic

variation using DNA sequence alone suggests that simple DNA

sequence-based models of variation might benefit from the in-

clusion of additional strategically chosen functional genomics

phenotypes, which has implications for the successful imple-

mentation of personal genomics (Chen et al. 2012). Moreover,

our data will serve as a useful starting point for transitioning from

quantitative, systems-level models of bacterial cells (Karr et al.

2012) to similar models of eukaryotes. As technology devel-

opment, advances in instrumentation, and algorithmic im-

provements allow for increasingly comprehensive phenomics

studies, a promising future direction will be to extend this ap-

proach to multiple environments, where organisms are naturally

found. Finally, our data will be a useful community resource, and

is available in multiple forms at http://www.yeastrc.org/g2p/

(Supplemental Fig. 6).

Methods

Chemostat growth
We grew strains in chemostats in phosphate-limited media until
cultures were deemed to have reached steady state (defined as
stabilizing to within 10% of the previous day’s density measure-
ments). We grew all strains in at least two chemostats to produce
biological replicates. In order to quantify steady state, we used
measurements by Klett colorimeter and by spectrophotometer,
using the same instruments each time for consistency. To avoid
any perturbation, we took sample culture passively at the effluent
port. When the culture density stabilized, we harvested the che-
mostat and used the samples for RNA, protein, metabolite, and
microscopy studies. Details of strain preparation, chemostat me-
dia, and harvesting procedures are provided in the Supplemental
Note.

Phenotyping

For genome sequencing, we grew strains to mid-log phase (OD660

0.8–1.0) in yeast extract peptone dextrose and extracted DNA by
the phenol:chloroform:IAA method (Rose et al. 1990). We con-
structed sequencing libraries as previously described (Tennessen
et al. 2012) and performed whole-genome sequencing using the
Illumina HiSeq 2000 (50-bp paired-end reads), barcoding in-
dividual samples with Illumina’s multiplex sample preparation
oligonucleotide kit. Details on genotyping, validation of SNP calls
using Sanger sequencing, phylogeny construction, and preparing
strain-specific reference genomes and peptide databases are pro-
vided in the Supplemental Note.

For RNA-seq, we began with frozen cells from samples taken
from the chemostats and extracted RNA by the acid phenol
method (Chomczynski and Sacchi 1987). We performed poly(A)
enrichment [MicroPoly(A) Purist Kit, Ambion] followed by ribo-
somal depletion (RiboMinus Kit, Invitrogen). We prepared RNA-
seq libraries, barcoded samples, and performed sequencing (50-bp
single-end reads) according to the manufacturer’s recommenda-
tions using the ABI SOLiD v4 (SOLiD Whole Transcriptome Anal-
ysis Kit, ABI). We randomly allocated all samples across three
flowcells and obtained 5–50 million reads per sample.

For quantitative proteomics, we lysed and digested samples
(Supplemental Note) and ran on an LTQ-FT mass spectrometer
(ThermoFisher), using an equimolar mix of a six protein bovine
digest (Michrom Bioresources, Inc.) for quality control (Supple-
mental Fig. 1). We randomized samples and ran them in replicate.
We processed high-resolution mass spectrometry data using
Bullseye (Hsieh et al. 2010) to optimize precursor mass infor-
mation. To identify peptides, we searched the MS/MS data using
SEQUEST (Eng et al. 1994) against a FASTA database containing all
protein sequences from all the strains. We determined peptide
spectrum match false discovery rates using Percolator (Käll et al.
2007) at a Q-value threshold of 0.01 and a posterior error proba-
bility threshold of 1. We assembled peptides into protein identi-
fications using an in-house implementation of IDPicker (Zhang
et al. 2007). To obtain a quantitative measure of peptide abun-
dance, we used the program Topograph (Hsieh et al. 2012). De-
tailed experimental and algorithmic protocols are provided in the
Supplemental Note.

We extracted metabolites (Supplemental Note) and per-
formed derivatizations as previously described (Fowler et al. 2011).
All metabolite analysis was done on a Leco Pegasus 4D system
(GC3GC-TOFMS). We acquired and processed data using the
ChromaTOF software. We eliminated from analysis all samples
with an insufficient average signal-to-noise ratio, which resulted in
a total of 91 samples representing 23 different strains. We used the
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software ChromaTOF (Leco) for peak calling and deconvolution
and the software package Guineu version 1.0 (Castillo et al. 2011)
to align the common metabolites among 91 individual sample
files. Detailed experimental protocols and a list of metabolites
measured are provided in the Supplemental Note.

For cellular morphology, we fixed and stained cells (Supple-
mental Note) and mounted on an agarose pad as described (http://
www.youtube.com/watch?v=ZrZVbFg9NE8) except that we did not
dry the pad before adding cells. We acquired images on a DeltaVision
Core using a 1003 UPlanApo NA 1.35 objective and the Photo-
metrics CoolSnapHQ camera. We processed images using CalMorph
software (Ohya et al. 2005; Supplemental Note). We collected
data for approximately 800 cells per strain in two replicates.
CalMorph outputs measurements that can be used to construct
a total of 501 traits (Nogami et al. 2007), but we discarded any
measurements related to image brightness as we considered this
unreliable to measure. We did not use any ‘‘total stage’’ traits
calculated at the population level since we selected some cells
from each cell cycle stage rather than completely at random,
leaving a total of 398 traits.

Normalization and data analysis

Overall, we implemented a two-stage model to test for differential
abundance of transcripts, proteins, and metabolites. In the first
stage, we used a linear model to remove effects due to batch and
other factors not of primary interest. We obtained normalized data
values by extracting residuals from this model. In the second stage,
we considered each gene separately and tested for a strain in-
fluence on phenotype using a random effects model with nor-
malized data values from stage one. We used a similar approach to
test for differences in morphological traits, modified slightly to
appropriately handle measurements from many cells for each trait.
We used R (R Development Core Team 2012) for all statistical
analysis throughout the paper. Details of this statistical approach
are provided in the Supplemental Note.

Identifying large-effect cis-regulatory transcript
and protein QTL

We conducted simulations to determine the power (Supplemental
Table 5) and false positive rate (Supplemental Fig. 4) for our tests of
association (Supplemental Note). To map cis-regulatory gene and
protein expression QTL, for each gene we focused on SNPs located
within 500 bp of annotated gene boundaries. We employed the
program EMMA (Kang et al. 2008), a mixed model approach that
performs well for controlling population structure in this scenario
(Connelly and Akey 2012), and performed permutations to cal-
culate P-values.

Examining the structure of phenotypic correlations

Before calculating RNA-protein correlations, we averaged the
abundance of all peptides mapping to the protein in question and
used this as a surrogate for protein level. We averaged transcript
and protein levels between biological replicates. We searched for
a difference in variability between TATA-containing genes and
TATA-less genes because it has been shown that the former cate-
gory of genes shows greater variability in gene expression than the
latter among yeast species (Tirosh et al. 2006).

To produce hive plots, we obtained values for RNA, protein,
metabolite, and morphological phenotypes averaged between
biological replicates and used nearest neighbor averaging to im-
pute missing values (in the metabolite and morphological data)
(Troyanskaya et al. 2001). We combined the resulting 1645 protein,

6207 gene expression, 115 metabolite, and 398 morphology trait
values into a single matrix and calculated Spearman’s rank cor-
relation coefficient between each pair of phenotypes. We per-
muted the data set and recalculated correlations, finding that
a cutoff of r = 0.7625 corresponded to a FDR of ;5%. We mod-
ified code from the HiveR package, available at http://academic.
depauw.edu/;hanson/HiveR/HiveR.html, to create the plots in
Figures 4A and 5B.

Phenotypic prediction

We exploited the phenotypic correlation structure to make pre-
dictions of interstrain phenotypic variation. Beginning with 8365
phenotypes (above), we sequentially withheld each strain, recal-
culated pairwise correlations between all phenotypes, and recorded
the phenotypes that were highly correlated (FDR = 5%) with each
other phenotype. Unless otherwise noted, we constructed models
using random forest regression. Algorithmic details for predictive
modeling are provided in the Supplemental Note.

We identified tag traits using a greedy algorithm where we
first selected the phenotype correlated with the largest number of
other phenotypes, then removed the selected phenotype and all
phenotypes correlated with it (as they are ‘‘tagged’’ by the selected
phenotype). We repeated this process until we acquired the desired
number of tag traits.

Data access
All data from this study are available at http://www.yeastrc.org/
g2p/. In addition, whole-genome sequence data and gene expres-
sion data have been deposited in the NCBI Sequence Read Archive
(SRA; http://www.ncbi.nlm.nih.gov/sra) under accession number
SRP018005. Fluorescence microscopy data have been placed in the
YRC Image Repository (Riffle and Davis 2010) and may be accessed
at http://images.yeastrc.org/g2p. Tracks for visualization of the
DNA sequencing and RNA-seq data have been made available as
a public track hub at the UCSC Genome Browser (Kent et al. 2002);
see http://www.yeastrc.org/g2p/.
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