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Abstract
High-throughput sequencing has enabled genetic screens that can rapidly identify muta-

tions that occur during experimental evolution. The presence of a mutation in an evolved

lineage does not, however, constitute proof that the mutation is adaptive, given the well-

known and widespread phenomenon of genetic hitchhiking, in which a non-adaptive or

even detrimental mutation can co-occur in a genome with a beneficial mutation and the

combined genotype is carried to high frequency by selection. We approximated the spec-

trum of possible beneficial mutations in Saccharomyces cerevisiae using sets of single-

gene deletions and amplifications of almost all the genes in the S. cerevisiae genome. We

determined the fitness effects of each mutation in three different nutrient-limited conditions

using pooled competitions followed by barcode sequencing. Although most of the muta-

tions were neutral or deleterious, ~500 of them increased fitness. We then compared those

results to the mutations that actually occurred during experimental evolution in the same

three nutrient-limited conditions. On average, ~35% of the mutations that occurred during

experimental evolution were predicted by the systematic screen to be beneficial. We found

that the distribution of fitness effects depended on the selective conditions. In the phos-

phate-limited and glucose-limited conditions, a large number of beneficial mutations of

nearly equivalent, small effects drove the fitness increases. In the sulfate-limited condition,

one type of mutation, the amplification of the high-affinity sulfate transporter, dominated. In

the absence of that mutation, evolution in the sulfate-limited condition involved mutations in

other genes that were not observed previously—but were predicted by the systematic

screen. Thus, gross functional screens have the potential to predict and identify adaptive

mutations that occur during experimental evolution.
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Author Summary

Experimental evolution allows us to observe evolution in real time. New advances in
genome sequencingmake it trivial to discover the mutations that have arisen in evolved
cultures; however, linking those mutations to particular adaptive traits remains difficult.
We evaluated the fitness impacts of thousands of single-gene losses and amplifications in
yeast. We discovered that only a fraction of the hundreds of possible beneficialmutations
were actually detected in evolution experiments performed previously. Our results provide
evidence that 35% of the mutations identified in experimentally evolved populations are
advantageous and that the distribution of beneficial fitness effects depends on the genetic
background and the selective conditions. Furthermore, we show that it is possible to select
for alternative mutations that improve fitness by blocking particularly high-fitness routes
to adaptation.

Introduction

There is a great need for rapid, high-throughput methods to identify adaptive mutations
among the growing list of mutations identified in experimentally evolved populations. Several
recent ‘Evolve and Resequence’ studies [1], in which populations or clones were sequenced
after adaptation to a specific condition, have dramatically increased the list of mutations associ-
ated with adaptation to different conditions [2–12]. Within that growing dataset, only a few
mutations have actually been confirmed experimentally as adaptive. Some large-scalemicrobial
studies have distinguished adaptive mutations from background neutral mutations on the basis
of statistical approaches based on the frequency, enrichment, and recurrence of specificmuta-
tions [2, 3, 9, 13–17]. Such statistical approaches entail substantial false-positive and false-neg-
ative rates.

Dissecting the fitness effects of everymutation observed in an evolved population is tedious,
although generally straightforward. For example, mutations can be reassorted via a genetic
cross, and the fitness of segregants carrying individual mutations or combinations thereof can
be assessed. That strategy has been used with a few laboratory-evolved Saccharomyces cerevi-
siae clones, demonstrating that evolved clones isolated after several hundred generations of
propagation in nutrient-limited conditions often carry one or two adaptive mutations [18, 19].
However, such methods are difficult to scale. An alternative approach is computational models
that predict the effects of mutations. A recent study directly compared several popular scoring
metrics and found them to be far inferior to experimental testing of fitness [20]. Given its ame-
nability to high-throughput experiments, S. cerevisiae is particularly well suited for genome-
wide assessments of the relationship between genetic variation and fitness. As an alternative,
we turned to currently available systematic mutant collections. Researchers have created bar-
coded strain collections in which thousands of genes are systematically deleted or amplified to
uncover gene functions (review in [21]). These strain collections have been used to mimic
important classes of mutations such as those resulting in loss-of-function (LOF), gene knock-
down, gene duplication, or changes in expression level [22–26]. Missing from these collections
are mutations that are not mimicked by copy-number changes, such as mutations in coding
regions that generate new protein activities or LOF effectsmore subtle than those of simple
knockout or knockdown alleles. Despite the large number of studies that have used the bar-
coded collections to detect deleterious effects such as haploinsufficiency, dosage sensitivity,
synthetic lethality, drug sensitivity, and various other phenotypes [24, 27–35], only a few stud-
ies have looked at beneficialmutations. One study quantified antagonistic pleiotropy in a
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variety of laboratory conditions and determined that whereas 32% of deletion strains were less
fit than a wild-type reference, only 5.1% of the strains were more fit [36]. Another study identi-
fied a large number of heterozygous deletions as beneficial but also demonstrated that the hap-
loproficiency was context-dependent [23]. The further application of systematic amplification
and deletion collections to study adaptive mutations will expand our understanding of that
unique and important class of mutations.

Most previous studies used phenotypic data to investigate gene function. The adaptive phe-
notypes displayed by the systematic amplification and deletion collections can also be used to
investigate questions from an evolutionary genetics perspective. The ability to identify benefi-
cial mutations en masse allows us to survey one set of beneficialmutations that could drive
adaptation. A greater understanding of adaptive mutations will allow us to begin to address a
number of open questions. How does the distribution of fitness effects differ across conditions?
What determines which of the possible beneficialmutations actually reach high frequencies in
evolving populations? Does the hierarchy of fitness among mutations drive those patterns
strictly, or do other factors play a role? How can we better design selective conditions to achieve
specific evolutionary outcomes?

We sought to address these questions using a system that combines high-throughput func-
tional genomics and experimental evolution.We first measured the fitness of deletions and
amplifications of almost all of the genes in the S. cerevisiae genome, which we refer to as the
amplification and deletion (AD) set, using pooled competitions of thousands of mutants under
selection in nutrient-limited continuous culture in chemostats followed by barcode sequencing.
We found that while most of the ADmutations were neutral or decreased fitness, ~500 of them
increased fitness in at least one condition and hence represented potential adaptive mutations.
We next compared the fitness values from the AD set to a set of mutations identified in experi-
mental evolution studies, which we refer to as the evolutionary (E) set. By comparing the E set
with the results from the AD set, we recapitulated five of eight previously verified beneficial
mutations and predicted that on average at least one third of the mutations present in the
evolved strains were likely to positively affect fitness. In sulfate-limited conditions, mutations
in one gene dominated the distribution of fitness effects in both the AD set and the E set. In
glucose-limited and phosphate-limited conditions, the distributions of fitness effects were char-
acterized by a large number of beneficialmutations of smaller effect.We found that the distri-
bution of fitness effects in the sulfate-limited condition could be modified by precluding the
dominant adaptive solution, which allowed the evolving populations to explore alternative ben-
eficial mutations predicted based on the AD set. This study takes an initial step towards deter-
mining the fitness effects of candidate adaptive mutations, substantially improving on the
throughput of other experimental approaches as well as on the accuracy of purely statistical or
computational approaches.

Results

A comprehensive survey of single-step mutations (AD set)

We measured the fitness effects of single-gene changes in copy number for ~80% of the genes
in the yeast genome using pooled competitions of five different collections of yeast strains in
three different nutrient-limited conditions followed by Illumina-basedbarcode sequencing
([22] Fig 1; S1 Table). Two of the collections, the deletion collections, consisted of haploid and
heterozygous diploid strains, respectively; in each strain, one copy of a single gene was replaced
by a selectablemarker with a unique DNA barcode [31]. One (control) collection consisted of
~2,000 otherwise isogenic wild-type strains created by placing unique barcodes at a single, neu-
tral genomic location [32]. The other two collections consisted of diploid strains bearing a low
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or high copy-number plasmid, respectively; each plasmid contained a single gene, the corre-
sponding native promoter, and a unique barcode [29, 30].

We conducted a total of 30 continuous-growth competition experiments with phosphate,
glucose, and sulfate, respectively, as the limiting nutrient. We screened each yeast collection
twice in each condition (S1 Fig). In each screen, we mixed all of the strains from a single collec-
tion together at approximately equal proportions in a single culture vessel and measured the
proportion of each strain at time points throughout the course of ~20 generations of propaga-
tion (S2 Fig). We used large populations (~109 cells) to overcome the stochastic effects of drift
[23]. We measured the fitness over a relatively short period of time to limit the effects of de
novomutations, sampling the populations every three generations to maximize the accuracy of
the fitness quantification.We measured the frequency of each strain at each time point using
barcode sequencing (barseq; S3 Fig) [22]. We note that this experiment design does not allow
us to control for mutations already present in the strains before the onset of the competition
experiment.

Hundreds of the copy-number changes in the AD set had positive fitness

effects

We made a total of 100,853 measurements of relative fitness, ranging from -36.5% to 42.8%,
based on an average of 462 reads per gene per screen.We then created fitness distributions of
the AD strains in each of the three selective conditions (Fig 2; Table 1 and S2 Table). We were
able to measure the fitness effects of copy-number changes of 2,133 genes in all 12 experiments
and to measure the fitness effects of copy-number changes of an additional 2,953 genes in at
least one experiment.

To determine the inherent noise originating from the strain construction, pool generation,
competition, and sequencing, we quantified the relative fitness of the strains in the control col-
lection. The fitness distribution was tightly centered on 0; 98.2% of the control strains had fit-
ness between -10% and +10% (Fig 2; S3 Table). We therefore used fitness values of ±0.10
(corresponding to a 10% change in fitness) as the cutoffs to identify strains in the other four
collections that had a significant fitness benefit or deficit compared with the control strains.
Previous analyses showed that a beneficialmutation resulting in a 10% fitness increase will
reach 5% of the population in ~200 generations and will fix in ~500 generations [37, 38], which
suggests that mutations causing a fitness increase of less than 10% would rarely be identified as
beneficial in our experimental evolution regime.

Fig 1. Experimental design for the pooled competition experiments. The proportion of each strain was measured every three to four generations during

pooled competition assays, in which all the strains from a single collection were mixed together in equal proportions and grown in continuous culture for 20

generations (A). The frequency of each barcode at each time point was measured using the barseq method (B). The fitness of each strain was computed

based on the measured frequencies (C).

doi:10.1371/journal.pgen.1006339.g001
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Most of the deletion and amplification strains displayed wild-type or near wild-type fitness.
The fitness distributions of the AD strains were broader than that of the control strains. Based
on the 10% cutoff values, the AD collections were enriched for strains with decreased fitness
(n = 1693) or increased fitness (n = 506) compared with the control collection (n = 19 and 80,
respectively;Chi square, p<0.001 and p = 0.0033, respectively;Fig 2). Of the strains with
increased fitness (S5 Table), 223 had increased fitness in sulfate-limited conditions, 210 in glu-
cose-limited conditions, and 73 in phosphate-limited conditions. Only a small fraction of
strains had increased fitness in more than one condition (n = 25).

The 506 strains with increased fitness represented copy-number changes in a total of 458
genes (S5 Table). Seventy three percent of those strains were from the plasmid collections,
which comprised just 47% of the total strains tested, suggesting that duplications of single
genes are more likely than deletions to produce fitness gains. The AD set only recreates gross
dosage changes and not mutations acting via different mechanisms; however, our screen iden-
tified five of eight genes in which beneficialmutations were previously identified in evolution
experiments (considering only those known beneficialmutations with matching strains in the
AD set): the amplification of SUL1 and LOF mutations affecting SGF73 in sulfate-limited

Fig 2. Distribution of the fitness effects of single-gene amplifications and deletions. Fitness distributions of the

five yeast collections in glucose-limited, sulfate-limited, and phosphate-limited continuous-growth conditions. The

fitness of each strain is shown as a small line. The fitness distribution of the control collection is shown in grey. The

thick black line represents the mean. Dashed grey lines indicate the cutoff of ±10% measured using the control

collection.

doi:10.1371/journal.pgen.1006339.g002

Table 1. Number of strains for which fitness was measured in each collection.

Limiting nutrient Deletion (1N) Deletion (2N) Low-copy plasmid High-copy plasmid

Glucose 3724 5054 4038 4018

Sulfate 3796 5126 4062 3679

Phosphate 4043 5086 4112 4078

doi:10.1371/journal.pgen.1006339.t001
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conditions and mutations affectingMTH1,WHI2, and GPB2 in glucose-limited conditions
[18, 19, 39]. These results demonstrate that the AD collectionswere able to replicate the pheno-
types caused by some beneficialmutations, although they failed to replicate those caused by
others (e.g., mutations in PHO84, IRA1, and RIM15). Among the genes associated with a fit-
ness increase in the AD set, SUL1 was associated with the greatest fitness (42.8% in the sulfate-
limited condition for a strain carrying the high-copy plasmid). In previous experiments, SUL1
amplification was recurrently selected during evolution in sulfate-limited conditions, and
increasing the SUL1 copy number via expression on both low-copy and high-copy plasmids
increased fitness [39, 40]. Our screen also identified one gene that was previously identified as
the cause of putative secondary adaptive effects:BSD2, a gene involved in the downregulation
of the metal transporter proteins Smf1 and Smf2 [41, 42] and located 6kb upstream of SUL1 on
chromosome 2. The amplification of BSD2 on a low-copy plasmid increased fitness by 5% and
12.4% in the sulfate-limited and glucose-limited conditions, respectively. In previous studies of
the SUL1 amplicon [39, 40], we detected only three independent clones where the SUL1 ampli-
con excluded BSD2. The fitness of each of 13 strains harboring an amplification of both SUL1
and BSD2was higher than the fitness of three strains harboring an amplification of SUL1 but
not of BSD2 [40], a result that was further supported by a fitness analysis of synthetic ampli-
cons [19]. The reintroduction of BSD2 using a low-copy plasmid into one of the three strains
harboring only SUL1 amplification increased the fitness in the sulfate-limited condition by
6.1% (from 37.7% to 43.8%), suggesting that the fitness effects of the two mutations are addi-
tive. These results demonstrate that the AD screen is able to detect adaptive mutations even of
small effect, although our control experiments suggest that the identification of such mutations
is likely subject to a higher false-positive rate than the identification of beneficialmutations of
larger effect. A decrease in the cutoff to ±5% resulted in the identification of increased or
decreased fitness in 15% of the control strains and increased the number of beneficialmuta-
tions identified in the AD collections by six fold (n = 3143). Although the less stringent cutoff
still identified significantlymore beneficialmutations in the AD collections than in the control
collection (Chi square, p<0.001), we decided to use the more stringent cutoff to focus on the
mutations with the highest impact.

Next, we sought to apply the knowledge gained from the screen of the AD set to the hun-
dreds of de novomutations identified in laboratory evolution experiments (E set). Our goal was
to determine which of the hundreds of possible adaptive mutations identified in the AD set
were actually selected during experimental evolution.

Mutations identified in evolution experiments (E set)

To compare the genes in the AD set that we identified as potential sites of adaptive mutations
to the genes in which mutations actually occurred during experimental evolution, we first
needed to create a comprehensive database of mutations identified in yeast evolution experi-
ments. To do so, we identified and resequenced the mutations that occurred in yeast evolution
experiments carried out by our lab [39, 40]. The experiments involved the propagation of hap-
loid or diploid prototrophic strains of S. cerevisiae for 122 to 328 generations in continuous-
culture conditions identical to those in which our AD screens were performed (six sulfate-lim-
ited, six phosphate-limited, and four glucose-limited populations.We detected 150 mutations
by whole-genome sequencing of 16 populations and 34 clones (SeeMaterials andMethods).
We then collected a large set of mutations from various Evolve and Resequence studies of yeast
performed in a variety of conditions [2–4, 8, 40, 43]. Thus, we compiled a total of 1,167 muta-
tions in 1,088 genes from 106 long-term evolution experiments conducted in 11 different con-
ditions in nine previous studies. We refer to this set of mutations as the E set (S4 Table). The
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features of the previous studies and the resulting mutations are summarized in Table 2. The
complete list of mutations, their frequencies, and their predicted effects are given in S4 Table.
The E set did not include chromosomal rearrangements, because those events were not always
reported in the previous studies.

Loss-of-function mutations were enriched in haploids and were depleted

and recessive in diploids

Two recent studies showed that LOFmutations were frequently selected in populations of hap-
loid yeast [2, 3]. Based on a small number of mutations, another study concluded that mutations
affecting cis-regulatory regions are co-dominant in heterozygous diploids [44]. Although those
results are suggestive, too few Evolve and Resequence studies have been performed in diploid
yeast to draw firm conclusions about the effects of ploidy on the distribution of fitness effects.

We divided the E set into four groups based on SNPeff, an annotation program that predicts
the functional impact of the mutation of a gene, as follows [45]: (1) high-impactmutations,
such as frameshifts or the gain or loss of a start or stop codon; (2) moderate-impact mutations,
such as non-synonymous substitutions or the deletion or insertion of a codon; (3) low-impact
synonymous mutations; and (4) modifiers, corresponding to mutations upstream of a gene or
within intergenic regions.We found that different types of mutations tended to be present in
haploid and diploid strains, respectively (Fisher’s exact test, p<0.001, corrected for multiple
tests). We confirmed previous findings showing that in haploids, the main category of muta-
tion is LOF mutations involving the gain of a stop codon (Chi square, p = 0.003; Table 3). In
contrast, LOF mutations were relatively rare in diploid strains, which were instead enriched for
intergenic and upstreammutations (Chi square, p<0.001; Table 3), suggesting that amplifica-
tions and gain-of-function (GOF) mutations are more important in the diploid background.
This result is consistent with our previous observations that evolved diploid strains contain
more and larger variations in gene and chromosome copy numbers than evolved haploid
strains [39]. Using only the mutations identified in glucose-limited conditions from the E set,
we determined that the mutational signature was different between haploids and diploids in
glucose-limited conditions (Fisher’s exact test, p<0.001), with an enrichment of LOF muta-
tions among the haploids (Chi-square, n = 224, p<0.001). Conversely, the mutations identified
in phosphate-limited conditions in the E set displayed only marginal enrichment of LOF muta-
tions (Fisher exact test, n = 54 p = 0.053), while those identified in sulfate-limited conditions
displayed no enrichment of LOF mutations (n = 100).

The different types of mutations observedbetween ploidies are likely explained by the ten-
dency of LOF mutations to be recessive [46, 47] compared with mutations that increase gene

Table 2. Mutational catalog (E set) subdivided by conditions, ploidy, and sample type.

Number of mutations compiled From this study

Conditions YPD 720 NA

Glucose 224 23

Sulfate 97 76

Phosphate 54 51

Other 72 NA

Ploidy Haploid 1017 75

Diploid 150 75

Sample type Clones 305 75

Population 862 75

doi:10.1371/journal.pgen.1006339.t002
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expression, which are more likely to have an effect in heterozygotes. Although loss of heterozy-
gosity has been observed in diploid populations [39, 46], such cases are relatively rare. To test
that directly, we examined the fitness effects of 55 beneficial deletions identified in both the
haploid and the diploid AD collections and found that those deletions indeed tended to be
recessive, causing on average a 9.0% ± 4.6 greater fitness increase in haploids than in diploids.
Seven of the 55 deletions (WSC3,TIM12, IPT1,MMS22,NDL1, PBS2, and YLR280C) had the
same fitness effect in haploids and diploids, indicating that a subset of LOF mutations can in
fact be dominant. Overall, LOF mutations appeared to provide a greater adaptive benefit in
haploid strains than in diploid strains, which is consistent with prior results.

Mutated pathways are constrained

Recurrence-basedmodels, which assume that oncogenes are recurrently mutated among inde-
pendent samples, are one of the most widely used approaches to identify putative driver genes
in cancer [48–50]. Recurrent adaptive trajectories have also been frequently observed in micro-
bial evolution [2, 3], leading to the discovery of drivers of adaptation such as SUL1,HXT6/7,
and RIM15 in S. cerevisiae and rpoS in Escherichia coli [3, 13, 14, 39, 51]. Of the 1,088 genes in
the E set, 154 were mutated in more than one sample, and 19 were mutated in more than five
samples (Fig 3A, S4 Table). The recurrently mutated genes were highly enrichedwith high-
impact mutations (Fisher’s exact test, p<0.001; Fig 3B) and tended to be longer than genes
that were mutated in only one sample (Wilcoxon rank-sum test, p<0.001; S4A Fig). There are
several tools that correct for gene length to detect true adaptive mutations and discard false-
positives [52]. We decided to use a different approach by inferring the fitness effects of muta-
tions using the results from the AD screen.

Prediction of evolutionary responses to strong selection

Convergent evolution has been widely used as a predictor of evolutionary outcomes. We
decided to compare the list of recurrently mutated genes from the E set to the results of the AD
screen, restricting our analysis to experiments performed in the same conditions.

In the E set, 36 genes were mutated twice in at least one of the three conditions used in the
AD screen. Ten of those genes were associated with a fitness increase of at least 10% in at least
one collection in the AD set (SUL1 and SGF73 in the sulfate-limited condition and GPB2,
PBS2, AEP3,MUK1,HOG1, ERG5, SSK2, andWHI2 in the glucose-limited condition). Eight

Table 3. Comparison of the mutational signature between haploid and diploid strains (E set).

Class All Diploid Haploid p-value* q-values* SNPeff

Stop gained 123 5 118 0.003 0.005 High

Start lost 8 1 7 0.97 0.591 High

Stop lost 2 0 2 0.59 0.469 High

Frameshift 6 0 6 0.74 0.496 High

Non-synonymous substitution 817 97 720 0.15 0.201 Moderate

Codon deletion/insertion 3 0 3 0.51 0.469 Moderate

Synonymous substitution 142 15 127 0.46 0.469 Low

Upstream 13 7 6 0.0001 0.002 Modifier

Intron 5 1 4 0.63 0.469 Modifier

Intergenic 48 24 24 0.0001 0.002 Modifier

Total 1167 150 1017 <0.001 <0.001

* Chi-square and ¥ Fisher’s exact test p-values

doi:10.1371/journal.pgen.1006339.t003
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more genes were associated with a fitness increase that did not meet our stringent cutoff of
10% but exceeded 5%. The remaining 18 genes were either absent from the collections (n = 12)
or associated with no fitness increase in the corresponding condition (n = 6). The six genes
that showed no fitness effect in the AD set could have been recurrently mutated by chance.
Alternatively, the mutations in the E set could have provided fitness increases that were not
mimicked by the AD collections, which could be the case for mutations that caused partial
LOF or that resulted in a novel function, or due to fitness-changing errors or secondarymuta-
tions in the relevant strains. Another possibility is that those mutations only provided a benefit
in a specific genetic background or in concert with other mutations. Strains from the AD set
could also have accumulated additional mutations that mask the true effect of the query
mutation.

A large number of genes identified in the E set were mutated only in a single population.
Because the number of Evolve and Resequence experiments is relatively small, akin to a non-
saturating genetic screen, some adaptive mutations are likely to be found as singletons and
would therefore be missed by a recurrence-baseddetectionmethod. The E set contained 155
genes that were mutated only once in glucose-limited, sulfate-limited, or phosphate-limited
conditions.We used the data from the AD set to determine if those singletons might be associ-
ated with a fitness increase in the corresponding environment. Of the 155 singletons, only
three had a fitness effect of at least 10% when amplified or deleted: amplifications of NMA111
in the sulfate-limited condition and CLN2 and YOR152C in the glucose-limited condition.
Thirty-eightmore genes had a fitness effect between 10% and 5% (average fitness = 7.2±1.1).
Cln2 is one of the three G1 cyclins and promotes cell-cycle progression. The expression of G1
cyclins is regulated in response to nutrient limitations; in particular, it is repressed in the pres-
ence of glucose [53].

These results show that while convergent evolution is useful for identifying adaptive muta-
tions, some singletons might also have fitness effects and should not be overlooked. Only a
small portion of the singletonmutations were predicted by the AD screen to be beneficial,

Fig 3. Recurrently mutated genes reveal how evolution is constrained. (A) Repeatability of adaptation and parallelism at the gene

level. Genes were classified by the number of mutations detected during Evolve and Resequence studies: 154 genes were mutated in

more than one sample; 48 genes with recurrent mutations were mutated in more than one condition (small panel). (B) Enrichment of

recurrently mutated genes with high-impact mutations compared with genes mutated in only one sample. Enrichment is not observed for

moderate or low impact mutations, or modifiers. Error bars are 95% CIs.

doi:10.1371/journal.pgen.1006339.g003
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suggesting three possibilities, which are not mutually exclusive: the relevant data are missing
from the AD screen (only 52 of the 202 genes with singletonmutations were represented in all
four collections and all three conditions used for the AD screen); the AD screen does not accu-
rately reflect the fitness of these point mutations; or the singletons were increasing in frequency
in the evolved populations due to the presence of a beneficialmutation elsewhere in the
genome, a phenomenon known as hitchhiking. If the first or second explanation were true,
many of the evolved samples should lack mutations predicted to be adaptive by the AD screen,
because the AD screen would have a high false-negative rate. If most of the singletons were the
result of hitchhiking, all of the evolved samples should carrymutations predicted to be benefi-
cial by the AD screen in addition to the neutral or weakly deleterious hitchhiker mutations.

All evolved populations harbor beneficial mutations

In order to determine the relative contributions of these explanations, we predicted the number
of adaptive mutations each population and clone in the E set should carry based on the fre-
quency of recurrence in the E set and the fitness data from the AD set. We determined that
each clone or population in the E set carried at least one adaptive mutation predicted by the
AD screen, which is consistent with the modest false-negative rate for the AD screen. Each
sample in the E set contained on average 1.8 (2.2 per population and 1.4 per clone) adaptive
mutations predicted by the AD screen, representing 35% of the total mutations identified in
the E set (Fig 4A–S6 Table). There was no difference in the prevalence of predicted adaptive
mutations among the three selective conditions (S4B Fig). That result is consistent with previ-
ous reports of frequent hitchhiking by neutral or deleteriousmutations [2, 51, 54, 55]. Our esti-
mate largely agrees with the results of detailed genetic analyses of mutations carried by evolved
strains, which found that one third of the single-genemutations among a total of five evolved
clones were associated with a fitness increase [18, 19, 39]. Thus, by combining the data from
the AD set and the E set, we were able to generate a more comprehensive list of adaptive muta-
tions in evolved populations as well as estimate the genomic reservoir of beneficialmutations
that were not detected.We conclude that evolution is partly predictable based on the repeat-
ability of adaptive mutations among independent populations and reflects, at least in part, the
fitness distribution of possible mutations, as mimicked by genome-wide screens of gene dele-
tions and amplifications.

The set of beneficial mutations reveals potential drivers of adaptation

The E set defined a set of 28 genes that were the sites of adaptive mutations with large effects
(based on the classification of mutations present in the AD set), which we consider to be candi-
date driver genes. Three of the candidate driver genes were mutated in only one sample, and 25
were mutated repeatedly among different samples. The AD screen identified a large number of
potential sites of beneficialmutations that were a single mutational step away from the ances-
tral genotype [56]. To determine what differentiates the actual mutational spectrum from the
pool of potential beneficialmutations, we excluded the genes in the E set that harboredmuta-
tions that were predicted to be beneficial based on the AD screen (n = 28) and examined the
remaining genes that were associated with fitness increases in the AD screen (n = 430). Given
the population sizes (105 to 1010 cells) and numbers of generations (50 to 1000) in the evolution
experiments and the size of the yeast genome (~12 megabases), it is likely that every base in the
genome was mutated at least once at some point among the ensemble of experiments in the E
set. It therefore seems unlikely that mutations in the 430 genes identified in the AD screen as
potential sites of adaptive mutations failed to occur at some point in the evolution experiments,
although there was a greater likelihood that mutations mimicking the plasmid-based
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amplifications actually failed to occur, because point mutations that significantly increase gene
expression might simply not exist in some promoter regions [57]. Furthermore, gene-amplifi-
cation rates are generally biased by genomic-architecture constraints, such as proximity to
repeat sequences, and the fitness effects of multigenic amplicons are complicated by the contri-
butions of genes linked to the driver gene [19].

In order to better understand those issues, we compared the condition-specific fitness effects
of the ADmutations that matched E-set mutations in the same condition with those of the AD
mutations that did not match any E-set mutations in the same condition. In the glucose-limited
condition, there was no difference on average between the fitness effects of the ADmutations
with and without matching E-set mutations (Fig 5A). In the sulfate-limited condition, the AD
mutations with matching E-set mutations had greater fitness effects on average than those
without matching E-set mutations (Wilcoxon rank-sum test, p = 0.001; Fig 5A). Consistent
with previous findings, SUL1 dominated the fitness distributions in sulfate-limited conditions

Fig 4. Driver mutations. (A) Boxplot representing the ratio of driver to total mutations detected in evolved clones

and populations. The significance of the difference between clones and populations was estimated using a

Wilcoxon-ranked test.

doi:10.1371/journal.pgen.1006339.g004
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in both the AD set and the E set (Fig 5B). When the SUL1 amplifications were excluded from
the comparison of ADmutations with and without matching E-set mutations, the ADmuta-
tions with matching E-set mutations still had greater fitness effects on average than those with-
out matching E-set mutations (Wilcoxon rank-sum test, p = 0.05). Other highly beneficial
mutations (with>20% fitness increase) such as amplifications ofMAC1 and PHO3; encoding
proteins implicated in copper and phosphate-sulfate metabolism, respectively; appear to be
potential drivers of evolution but have not been identified in evolved populations (Fig 5B; [2,
58]). That suggests that, at least under sulfate-limited conditions, adaptation can be predicted
based on the fitness effects of potential single-genemutations, with the mutations providing
the largest increase in fitness being the most likely to reach high frequencies. Although fewer
clones and populations have been sequenced from phosphate-limited evolution experiments,
all of the beneficialmutations in that condition in the E set could be predicted based on recur-
rence. Conversely, in glucose limitation, a variety of beneficialmutations with smaller fitness
effects appear to be possible and were indeed observed in evolved populations.

Condition-dependent or genome-wide variation in mutation rates could bias adaptive out-
comes relative to the distribution of fitness effects seen in the AD screen [2]. The lack of
observedmutations in the E set corresponding to many of the genes identified by the AD
screen as potential sites of beneficialmutations likely reflects a combination of many factors,
including random chance, epistatic interactions, strain background differences, or a failure of
the AD set to adequately recapitulate the fitness of de novomutations. Clonal interference is
also likely to play a role.

Fig 5. Alternative accessible evolutionary paths. (A) The fitness of beneficial mutations found (F) in Evolve and Resequence studies is significantly

higher than the fitness of beneficial mutations not found (NF) in sulfate-limitation but not in glucose-limitation. The significance of the difference

between the two boxplots for each condition was estimated using a Wilcoxon-ranked test. (B) Each point represents the fitness of a strain and the

proportion of Evolve and Resequence samples with the corresponding gene mutated. SUL1 dominates the fitness and mutational spectrum. Several

mutations have a high fitness but have never been detected in Evolve and Resequence studies and might correspond to potential drivers of

adaptation.

doi:10.1371/journal.pgen.1006339.g005
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Mutational spectrum in the absence of the main adaptive mutation

We asked which mutations would be selected in sulfate-limited conditions if SUL1 amplifica-
tion were not possible. Alternative adaptive mutations might only rarely reach high frequencies
in sulfate-limited conditions because of the strong fitness effects of SUL1 amplification. We
hypothesized that in the absence of the SUL1 amplification, a variety of alternative mutations
of smaller effect would be selected, an outcome more similar to the pattern observed in glucose
limitation.We analyzed two populations that lacked SUL1 amplifications (Fig 6A, population
s611 and s612 S4 Table) but showed fitness gains after 200 generations of evolution in sulfate-
limited conditions. The fitness gains of those populations (~30%; Fig 6B) were near the lower
end of the range of fitness gains in previously studied clones harboring SUL1 amplifications
(37–53%) [40]. To establish which mutations were responsible for the fitness gains in the
absence of SUL1 amplification, we performedwhole-genome sequencing of the populations
isolated at generation 200. We detected two independent, non-synonymous mutations
(N263H and N250K) in the coding region of SUL1 in both populations (S4 Table). We inserted
each of those mutations into wild-type strains and found that N250K increased fitness by
23.1% (±2.3%) and N263H increased fitness by 17.7% (±1.22%). In addition, one population
(s611) harbored a nonsense mutation in SGF73, a gene previously identified as the site of an

Fig 6. Alternative beneficial mutations are selected in the absence of the main driver. (A) The copy number of SUL1 was assessed using qPCR of

samples taken from two independent experiments in which SUL1 was not amplified (green and pink) and compared with previously published data from

wild-type strains (in grey) [40]. (B) The fitness coefficient as compared to the ancestral strain of population samples at generations 5, 50, and 200 and the

fitness of two clones isolated at generation 200. (C) A small deletion (~5kb) encompassing four genes on chromosome IV was detected in a population

from one experiment (between brackets); polyT sequences are present at the breakpoints. The colors of the boxes represent the orientation of the genes

(yellow: gene on the Watson strand, grey: genes on the Crick strand). (D) Fitness coefficients of the deletion strains ipt1Δ and snf11Δ and those of both

deletion strains complemented with IPT1 or SNF11 on a low-copy plasmid grown in sulfate limitation.

doi:10.1371/journal.pgen.1006339.g006
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adaptive mutation (S4 Table), and the other population (s612), harbored a 5.1 kb deletion on
chromosome IV (587839–592999) affecting four genes (FMP16, PAA1, IPT1, and SNF11; Fig
6C). In the AD screen, deletions of IPT1 and SNF11were beneficial in glucose-limited and sul-
fate-limited conditions (10–20% fitness increase), but mutations in those genes were not
included in the E set (Fig 5B). Because IPT1 and SNF11 are adjacent to one another on the
chromosome, we suspected that one of themmight be a false positive, resulting from a known
artifact called the neighboring gene effect [59]. By employing complementation testing using
centromeric plasmids, we found that the deletion of either gene increased fitness (Fig 6D).
Snf11 is a subunit of the SWI/SNF chromatin remodeling complex, which is known to act as a
tumor suppressor in humans [60]. Ipt1 is implicated in membrane-phospholipid metabolism
and nutrient uptake [61]. Thus, our results showed that adaptive mutations predicted by the
AD screen can be relevant, even when they are rarely identified in evolution experiments.We
predict that additional evolution experiments that preclude the possibility of SUL1 amplifica-
tion will reveal even more alternative fitness peaks.

Discussion

We addressed two central topics in evolutionary biology: the relationship between genotype
and fitness and evolutionary constraints despite the presence of alternative evolutionary paths.

The high-throughput functional screen improved the detection of

adaptive mutations

The recurrence-based identification of adaptive mutations provides an incomplete picture of
the impact of mutations on cellular fitness [62]. In agreement with previous reports [2, 3, 9, 13,
39, 51], we found that experimental evolution resulted in non-uniform selection of mutations
across the genome (Fig 3A). It is currently impossible to screen all possible mutations, so we
used whole-gene amplifications and deletions as a first step in approximating the spectrumof
potential mutations. We believe that this is a reasonable approach given the prevalence of gene
copy-number changes and LOF mutations in experimentally evolved populations [2, 3, 39],
and our success in identifying genes with previously validated high fitness mutations.

Our results can be used to prioritize the experimental validation of potentially adaptive
mutations found in evolved strains. The AD screen allowed us to discriminate between adap-
tive mutations and neutral or passenger mutations in evolved populations. Based on the results
of the AD screen combined with the information provided by the E set, we predict that ~35%
of the mutations appearing in laboratory-evolved populations are likely beneficial.As expected,
that number is higher than previous estimates of the baseline rate of beneficialmutations (6–
13%) based on mutation-accumulation experiments with yeast [63].

Different functional categories of mutations are selected based on ploidy

The frequencies of different categories of adaptive mutations (e.g., LOF or altered level of
expression) differed between haploids and diploids. In agreement with previous work [3], we
detected an excess of LOF mutations in haploids and an excess of mutations that likely modify
gene expression in diploids. Our results agree with those of several studies showing that muta-
tions have greater fitness effects in haploids than in heterozygous diploids [64] and that the fre-
quency of fixation is higher in diploids [37]. Mutations affecting cis-regulatory regions have
often been described as co-dominant, whereas most mutations in coding regions cause LOF
and are recessive [44]. Large copy-number variations (CNVs) have been shown to be enriched
in diploid backgrounds compared with haploid backgrounds [39], suggesting that a diploid
context might buffer the detrimental effects of aneuploidy and CNVs seen in haploids [65, 66].
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These results emphasize the point that evolutionary trajectories are constrained by ploidy and
that patterns observed at a particular ploidy are unlikely to act universally.

We also observed that the majority of the beneficialmutations from the AD set are from the
plasmid collection, further illustrating the importance of gene amplifications in adaptation.

Remaining open questions

Despite our promising results, functional screens using single-gene amplifications and dele-
tions have several limitations. The available yeast collections are based on single-gene copy-
number changes and do not allow the study of mutations in protein-coding regions that are
not mimicked by dosage changes, mutations in non-genic functional elements, or combina-
tions of mutations. To explore the importance of non-genic regions and small genes that are
not present in the yeast collections, billions of individual and combined mutations need to be
generated in a comprehensive way, similar to the deepmutational scanning of proteins [67],
the MillionMutation Project [68], or newly created resources such as the tRNA deletion collec-
tion [69] and large telomeric amplicons [19]. Previous studies in microbial and viral systems
have provided evidence for both antagonistic and synergistic epistasis among beneficialmuta-
tions [36, 70–73]. Synthetic genetic arrays and similar approaches using the S. cerevisiae dele-
tion collection have been used to characterize negative and positive epistatic relationships, and
a nearly complete yeast genetic-interaction network has been generated using double mutants
[74, 75]. Further studies using those resources will allow us to move beyond single-gene effects
and begin to understand how interactions among multiple genes in CNVs and combinations of
mutations shape the distribution of fitness effects. By expanding and developing these tech-
niques, the increase of studies combining long-term experimental evolution and whole-
genome sequencing will likely reveal additional mutational effects.

Materials and Methods

Strains and media

The MoBY-ORF collection of centromeric (CEN) plasmids in E. coli was obtained fromOpen
Biosystems and stored at -80°C as individual strains in 96-well plates. The plates were thawed
and robotically replicated onto LB-Lennox (Tryptone 10g, yeast extract 5g, NaCl 5g) agar
plates containing 5Δg/ml tetracycline, 12.5μg/ml chloramphenicol, and 100μg/ml kanamycin
and grown at 37°C for 14 h. Colonies were harvested by addition of 5ml LB-Lennox to each
plate and subsequently pooled. Glycerol (50%) was added, and 1ml aliquots containing 2×109

cells were frozen at -80°C. Plasmid DNA was prepared from the E. coli pool and then used to
transform the S. cerevisiae S288C derivative strain DBY10150 (ura3-52/ura3-52) using a stan-
dard lithium acetate protocol. The yeast cells were selected on -URA and 200μg/ml G418
plates, resulting in 88,756 transformants, which were then pooled together, giving an average
library coverage of ~20×. The MOBY-ORF v2.0 collection (2 micron plasmid) was obtained
from the Boone lab and crossed for 3 h with YMD1797 (MATα, leu2Δ1). Clones were selected
twice on MSG/B and G418 (200μg/ml) and then pooled together. TheMATa/MATα SGA
Marker (MM2N) collectionwas obtained already pooled from the Spencer lab. TheMATa
SGAMarker (MM1N) library was obtained frozen from the Caudy lab; the strains were
selected on -LYS and -MET and then pooled together. The barcoder collectionwas obtained
frozen from the Nislow lab. The plates were thawed at room temperature, replicated onto YPD
and G418 (200μg/ml), and crossed with FY5 (MATα, prototrophic strain). The strains were
then selected twice on MSG/B+G418 (200μg/ml) and pooled together. A list of the strains used
in this study can be found in S1 Table.
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Continuous cultures and pooled competition experiments

Previously describednutrient-limitedmedia (sulfate-limited, glucose-limited, and phosphate-
limited [13, 39, 76]) were complemented with uracil and histidine (20mg/l) for the SGA
Marker pools. For each competition, a 200ml culture was inoculatedwith 1ml of a single pool
(~2×107 cells). Two competition experiments were performed for each pool. The cultures were
grown in chemostat culture at 30°C with a dilution rate of 0.17±0.01 volumes/h. The cultures
were grown in batch for 30h and then switched to continuous culture. The continuous cultures
reached steady state after ~10 generations and were maintained for an additional 20 genera-
tions (S2 Fig). A sample taken just after the switch to continuous culture was designated gener-
ation 0 (G0). Subsequent samples were harvested every three generations thereafter. Samples
for cell counts and DNA extractionwere passively collected twice daily.

Genomic DNA preparation, plasmid extraction, and qPCR

Genomic DNA was extracted from dry, frozen cell pellets using the Smash-and-Grab method
[77]. Plasmids from the MoBY collections were extractedwith a Qiagenminiprep protocol
(QIAprep Spin mini prep kit; Qiagen, Hilden, Germany) with the followingmodification:
0.350mg of glass beads were added to a cell pellet with 250μl buffer P1 and vortexed for 5min.
Then, 250μl buffer P2 was added to the mix of cells and beads, and 350μl buffer N3 was added
to the solution before centrifuging for 10 min. The supernatant was then applied to the Qiagen
column following the recommendation of the Qiagenminiprep kit. Plasmid DNA was then
eluted in 50μl sterile water. Genomic DNA was extracted from dry cell pellets by the Smash-
and-Grab method and used for barcode verification of single strains by PCR amplification and
Sanger sequencing as previously described [40]. For each sample, the plasmid copy number
was determined using the copy number of KanMX relative to the copy number of DNF2, a
gene located on chromosome 4 and absent from the twoMoBY collections (see S6 Fig). The
primers used are listed in S8 Table. Microarray assays, whole-genome sequencing, SNP calling,
and qPCR analysis were performed as previously described [40]. The microarray data have
been deposited in the Gene Expression Omnibus repository under accession GSE58497 (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=sjgtsgwmdhajdud&acc=GSE58497). The
fastq file for each library is available from the NCBI Short Read Archive with the accession
number PRJNA248591 and BioProject accession PRJNA249086.

Barseq experiments and fitness measurement

Amplifications of the barcodes were performed using a modified protocol [22]. Uptag barcodes
were amplified using primers containing the sequence of the common barcode primers (bold),
a 6-mer tag for Illumina multiplexing (in italics), and the sequence required for attachment to
the Illumina flowcell (underlined; S8 Table). PCR amplifications were performed in 100μl,
using Roche FastStart DNA polymerase with the following conditions: 94°C for 3min; 25 cycles
of 94°C for 30s, 55°C for 30s, and 72°C for 30s; followed by 72°C for 3min. PCR products were
then purified using the QiagenMinElute PCR Purification kit (cat. No. 28004), quantified
using a Qubit fluorometer, and then adjusted to a concentration of 10μg/ml. Equal volumes of
normalizedDNA were then pooled and gel purified from 6% polyacrylamideTBE gels (Invi-
trogen) using a soak and crushmethod followed by purification and concentration using Qia-
gen Qiaquick PCR purification. After quantification using a Qubit fluorimeter, the libraries
were sequenced using the standard Illumina protocol as multiplexed, single-read, 36-base
cycles on several lanes of an Illumina GenomeAnalyser IIx (GAII). Thirty multiplexed libraries
(UPTAGS only) were sequenced on several lanes of an Illumina GAII. An average of
25,664,072 million reads per library that perfectlymatched the molecular barcodes were
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obtained (S9 Table). The fastq file for each library is available from the NCBI Short Read
Archive with the accession number PRJNA248591 and BioProject accession PRJNA249086
(S10 Table). The 6-mer multiplexing tags were reassigned to a particular sample using a cus-
tom Perl script (S1 File). Then, each barcode was reassigned to a gene using a standard binary
search program (programmed in C, S2 File). Only reads that matched perfectly to the reanno-
tated yeast deletion collection [22] or the MoBY-ORF collection [29] were used. For the barco-
der collection, 1885 barcodes were recovered using a compiled list of all barcodes previously
published (1624 barcodes from the barcode list of the deletion collection and 260 barcodes
from the Yeast Barcoders collection; [28, 32]). Multiple genes with the same barcodes were dis-
carded. Strains with less than 20 counts across the different samples were discarded. The num-
bers of strains identified for the five collections in the three conditions are summarized in S9
Table. To avoid division by zero errors, each barcode count was increased by 10 before being
normalized to the total number of reads for each sample. To quantify the relative fitness of
each strain during growth in the various conditions, the analysis was restricted to the time dur-
ing which the populations were in a steady-state phase, defined as generations 6 through 20.
Generation 0 was used as t0. The linear regression of the log2 ratios of the normalized barcode
counts at generations 6–20 to that at generation 0 was used to calculate the fitness of each
strain. The two replicate measurements were then averaged. The source code is provided in the
Supporting Information (R script, S3 File). The correlation between each pair of replicates was
displayed using the R package corrgram. The distribution of the averaged fitness was displayed
using the R package beanplot [78].

Validation of the fitness measurements and pairwise competitions

To ensure that the pooled fitness measurements accurately reflected the fitness of each strain,
the relative fitness of 51 strains from the deletion and plasmid collections that had deleterious,
neutral, or beneficial changes was measured by pairwise competitions against a control strain
marked with a fluorescent protein (eGFP) in the three conditions used in the pooled experi-
ments. Fitness measurements of the individual clones were performed as previously described
[40] using FY strains in which theHO locus was replaced with eGFP (MATa: YMD1214 and
MATa/MATα: YMD2196; S5 Fig, S7 Table). The fitness values were similar in both assays,
and there was a strong positive correlation (R2 = 0.83) between the fitness values from the large
pool screen and the pairwise fitness assays (S5 Fig and S7 Table). To limit artifacts due to pre-
existingmutations or copy-number changes in the genomes of the pooled strains, most of the
barcoded pools were created either by fresh transformation (in the case of the plasmid collec-
tions) or from a fresh cross of the commercially available collection stocks with a wild-type
strain (see theMaterials andMethods).

To detect the extent of extraneousmutations in the validation panel, 51 strains were screened
for the most common secondarymutation detected previously in the deletion collection:muta-
tions inWHI2, which is involved in the regulation of cell proliferation [79]. Mutations inWHI2
were screened in the 51 strains by PCR using oligo (YOR043W-for and YPR043W-rev) and
Sanger sequencing (S7 Table). Microarray analysis of the last sample of one of the competitions
of the low-copy plasmid collectionwas used to verify that there were no copy-number changes,
other than those due to the plasmids, at the population level; although that approach would only
detect CNVs that achieved at least a ~10% frequency in the population.

Data access

All sequencing data from this study have been submitted to the NCBI SequenceRead Archive
(SRA; http://www.ncbi.nlm.nih.gov/sra) under accession number PRJNA248591 and BioProject
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accession PRJNA249086. Microarray data from this article have been deposited in the Gene
Expression Omnibus repository under accession GSE58497 (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?token=sjgtsgwmdhajdud&acc=GSE58497).

Supporting Information

S1 Fig. Scatter plots of fitness between replicates for each condition and pool. Each experi-
ment is labeled with the condition (G, S, or P, for glucose, sulfate, or phosphate limitation) and
the replicate (1 or 2).
(PDF)

S2 Fig. Steady state in continuous cultures was reached at generation six. Cell density over
time is shown for each pool grown in glucose, sulfate, and phosphate limitation for 20 genera-
tions.
(PDF)

S3 Fig. Relative frequencyover time of three strains from four collections.Each box, repre-
sents the relative frequency (log2 ratio of the frequency) of one strain over time. Each line (blue
and red) represents the linear regression used to calculate the relative fitness between genera-
tions 6 and 20.
(PDF)

S4 Fig. Distribution of high-impactmutations. (A) Distribution of gene size for recurrently
mutated genes and genes mutated in only sample, respectively. The significance of the differ-
ence between the two boxplots was estimated using a Wilcoxon rank-sum test. (B) The ratio of
driver mutations to total mutations was not condition-specific (p = 0.61, 0.05, and 0.05 for glu-
cose limitation, sulfate limitation, and phosphate limitation, respectively).
(PDF)

S5 Fig. Fitness of 51 mutant strainsmeasured in pooled competitions by barseq and in
pairwisecompetition assays. The fitness values in the pooled experiments are relative to the
mean fitness of the population.We therefore compared the fitness of 51 strains measured in
the pooled assays to that measured in pairwise fitness assays and found a strong positive corre-
lation between the values obtained via the two methods. Pearson’s correlation coefficientR² =
0.83. G: glucose limited; S: sulfate limited; P: phosphate limited.
(PDF)

S6 Fig. Copy-number fluctuations of the plasmidsmonitored by qPCR in population sam-
ples over time. (A) Copy number of the plasmid as determined by qPCR using population
DNA over time. Each color corresponds to a condition as described in panel B. (B) Average
plasmid copy number for the high-copy and low-copy plasmid collections grown for 20 gener-
ations in glucose-limited, sulfate-limited, and phosphate-limited conditions.
(PDF)

S1 Table. Strains and strain collectionsused in the study.
(XLSX)

S2 Table. Fitness measurements from the pooled competitions of the plasmid and deletion
collections.Notes: 1) Name: name of the gene. 2) Collections:MM1N (haploid deletion);
MM2N (heterozygous deletion); CEN (low-copy plasmid (MoBY-ORF)); 2micron: (high-copy
plasmid (MoBY-ORF-v2)). 3) Example: MM1N-phosphate (average of the two fitness values
for the haploid deletion collection competed in the phosphate-limited condition). 4) The num-
ber of replicates indicates the number of experiments for which the fitness was measured
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(maximum of 12 experiments).
(XLSX)

S3 Table. Fitness measurements from the pooled competitions of the barcoder collection.
Notes: 1) Barcode name. 2) Sequence of the barcode detected by barseq. 3) The limitation indi-
cates the condition (glucose, sulfate, or phosphate limitation) in which a particular fitness was
determined.
(XLSX)

S4 Table. Identities, frequencies, and predicted effects of the mutations identified in exper-
imental evolution studies.Notes: 1) Mutations detected by whole-genome sequencing of pop-
ulations and single clones from previous evolution experiments performed in batch and
continuous cultures. 2) The reference base was not always reported in the original studies. 3)
The number of mutations refers to the number of samples in which the gene was found to be
mutated. 4) Class indicates the class of mutations. 5) The sample corresponds to the sample
name in the original papers. 6) The population frequencywas reported when known. 7) Found
in clone: in cases where both population and single clones were sequenced, we indicated
whether the mutation was detected in both sample types. 8) Background: name of the strain
used in the studies. 9) The reference indicates the papers in which the mutations were pub-
lished (see the references at the end of the publication for a more detailed listing). 10) Snpeff:
http://snpeff.sourceforge.net/. 11) Detrimental/Beneficial:if the mutation affected a gene for
which a fitness decrease (detrimental) or increase (beneficial) had beenmeasured in the same
conditions, we reported the fitness effect of the mutation.
(XLSX)

S5 Table. Beneficialmutations identified in the pooled competitions.Notes: 1) Systematic
and Standard names correspond to the name of the target gene. 2) Only mutations with a fit-
ness>0.10 are reported here. 3) The limitation indicates the condition in which a particular fit-
ness was determined. 4) Detected in Evolution: if a mutation in the gene was reported in an
evolution experiment, the SNPeff effect is reported; otherwise, “Not found” is indicated. 5)
Recurrent: indicates the number of times the gene was found mutated in the evolution experi-
ments. 6) The conditions in which the gene was been found mutated in the evolution experi-
ments.
(XLSX)

S6 Table. Beneficialmutations in the previous evolution experiments.Notes: 1) The number
of beneficialmutations refers to the number of beneficialmutations per sample. 2) The condi-
tions refer to the conditions used during the evolution experiment. 3) Other events: some of
the studies reported copy-number variants or determined that the mutation was adaptive. 4)
The mutation total refers to the number of mutations reported per sample. 5) Generations
refer to the number of generations for which the sample was selected. 6) Ratio Benet total: the
ratio of the number of beneficialmutations to the total number of mutations. 7) Ratio benef
Generation: ratio of the number of beneficialmutations to the number of generations of selec-
tion.
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S7 Table. Fitness measurements from pairwisecompetitions versus those from pooled com-
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Drivers of Adaptation

PLOS Genetics | DOI:10.1371/journal.pgen.1006339 October 11, 2016 19 / 24

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006339.s009
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006339.s010
http://snpeff.sourceforge.net/
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006339.s011
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006339.s012
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006339.s013


multiple conditions [79]. We verified the absence of mutations inWHI2 by Sanger sequencing.
(XLSX)

S8 Table. Primers used in this study.
(XLSX)

S9 Table. Barcode sequences from the collectionsused in this study.
(XLSX)

S10 Table. Summary statistics for barcode sequencing experiments.
(XLSX)

S1 File. Perl script for demultiplexing sequencing files.
(PL)

S2 File. C script used for barcode assignment.
(C)

S3 File. R script used for linear regression for fitness calculations.
(R)

Acknowledgments

We thank the members of the Dunham lab, members of the Brewer/Raghuraman lab, Matt
Rich, ColinMcNally, Joseph Schacherer, and Michael Quance for helpful discussions and com-
ments on the manuscript. Thanks to Shane Trask for his help with the SRA submission.We
are thankful to all of the members of the yeast community who shared with us several yeast col-
lections, in particular the Boone, Spencer, Nislow, and Caudy labs. We thank Can Alkan for
assistance with the C programs, Loic Paillotin for help with Perl, Ron Hause for assistance with
ggplot2 and statistics, and also Charlie Lee from the Shendure lab for assistance with the DNA
sequencing. Thanks to Gavin Sherlock and Dan Kvitek for sharing prepublication data.

Author Contributions

Conceived and designed the experiments:CP ABSMJD.

Performed the experiments:CP GTO ABS JLP.

Analyzed the data: CP ABSWZMJD.

Wrote the paper:CPMJD.

References

1. Turner TL, Stewart AD, Fields AT, Rice WR, Tarone AM. Population-based resequencing of experi-

mentally evolved populations reveals the genetic basis of body size variation in Drosophila melanoga-

ster. PLoS Genet. 2011; 7(3):e1001336. doi: 10.1371/journal.pgen.1001336 PMID: 21437274

2. Lang GI, Rice DP, Hickman MJ, Sodergren E, Weinstock GM, Botstein D, et al. Pervasive genetic

hitchhiking and clonal interference in forty evolving yeast populations. Nature. 2013. doi: 10.1038/

nature12344 PMID: 23873039

3. Kvitek D, Sherlock G. Whole genome, whole population sequencing reveals that loss of signaling net-

works is the major adaptive strategy in a constant environment. PLoS Genet. 2013; 9(11):e1003972.

doi: 10.1371/journal.pgen.1003972 PMID: 24278038

4. Hong J, Gresham D. Molecular specificity, convergence and constraint shape adaptive evolution in

nutrient-poor environments. PLoS Genet. 2014; 10(1):e1004041. doi: 10.1371/journal.pgen.1004041

PMID: 24415948

Drivers of Adaptation

PLOS Genetics | DOI:10.1371/journal.pgen.1006339 October 11, 2016 20 / 24

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006339.s014
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006339.s015
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006339.s016
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006339.s017
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006339.s018
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006339.s019
http://dx.doi.org/10.1371/journal.pgen.1001336
http://www.ncbi.nlm.nih.gov/pubmed/21437274
http://dx.doi.org/10.1038/nature12344
http://dx.doi.org/10.1038/nature12344
http://www.ncbi.nlm.nih.gov/pubmed/23873039
http://dx.doi.org/10.1371/journal.pgen.1003972
http://www.ncbi.nlm.nih.gov/pubmed/24278038
http://dx.doi.org/10.1371/journal.pgen.1004041
http://www.ncbi.nlm.nih.gov/pubmed/24415948


5. Zhu YO, Siegal ML, Hall DW, Petrov DA. Precise estimates of mutation rate and spectrum in yeast.

Proc Natl Acad Sci U S A. 2014;2014 Jun 3; 111(22):E2310–8. doi: 10.1073/pnas.1323011111 PMID:

24847077

6. Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, et al. Genome evolution and adaptation in

a long-term experiment with Escherichia coli. Nature. 2009; 461(7268):1243–7. doi: 10.1038/

nature08480 PMID: 19838166

7. Lee MC, Marx CJ. Synchronous waves of failed soft sweeps in the laboratory: remarkably rampant

clonal interference of alleles at a single locus. Genetics. 2013; 193(3):943–52. doi: 10.1534/genetics.

112.148502 PMID: 23307898

8. Kao KC, Sherlock G. Molecular characterization of clonal interference during adaptive evolution in

asexual populations of Saccharomyces cerevisiae. Nat Genet. 2008; 40(12):1499–504. doi: 10.1038/

ng.280 PMID: 19029899

9. Tenaillon O, Rodriguez-Verdugo A, Gaut RL, McDonald P, Bennett AF, Long AD, et al. The molecular

diversity of adaptive convergence. Science. 2012; 335(6067):457–61. doi: 10.1126/science.1212986

PMID: 22282810

10. Herron MD, Doebeli M. Parallel evolutionary dynamics of adaptive diversification in Escherichia coli.

PLoS Biol. 2013; 11(2):e1001490. doi: 10.1371/journal.pbio.1001490 PMID: 23431270

11. Brown CJ, Todd KM, Rosenzweig RF. Multiple duplications of yeast hexose transport genes in

response to selection in a glucose-limited environment. Mol Biol Evol. 1998; 15(8):931–42. doi: 10.

1093/oxfordjournals.molbev.a026009 PMID: 9718721

12. Price RN, Uhlemann AC, Brockman A, McGready R, Ashley E, Phaipun L, et al. Mefloquine resistance

in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet. 2004; 364(9432):438–

47. doi: 10.1016/s0140-6736(04)16767-6 PMID: 15288742

13. Dunham MJ, Badrane H, Ferea T, Adams J, Brown PO, Rosenzweig F, et al. Characteristic genome

rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A.

2002; 99(25):16144–9. doi: 10.1073/pnas.242624799 PMID: 12446845

14. Blount ZD, Barrick JE, Davidson CJ, Lenski RE. Genomic analysis of a key innovation in an experi-

mental Escherichia coli population. Nature. 2012; 489(7417):513–8. doi: 10.1038/nature11514 PMID:

22992527

15. Sniegowski PD, Gerrish PJ, Lenski RE. Evolution of high mutation rates in experimental populations of

E. coli. Nature. 1997; 387(6634):703–5. PMID: 9192894

16. Gerstein AC, Lo DS, Otto SP. Parallel genetic changes and nonparallel gene-environment interactions

characterize the evolution of drug resistance in yeast. Genetics. 2012; 192(1):241–52. doi: 10.1534/

genetics.112.142620 PMID: 22714405

17. Chou HH, Berthet J, Marx CJ. Fast growth increases the selective advantage of a mutation arising

recurrently during evolution under metal limitation. PLoS Genet. 2009; 5(9):e1000652. doi: 10.1371/

journal.pgen.1000652 PMID: 19763169

18. Kvitek DJ, Sherlock G. Reciprocal sign epistasis between frequently experimentally evolved adaptive

mutations causes a rugged fitness landscape. PLoS Genet. 2011; 7(4):e1002056. doi: 10.1371/

journal.pgen.1002056 PMID: 21552329

19. Sunshine AB Payen C, Ong GT, Liachko I, Tan KM, Dunham MJ. The fitness consequences of aneu-

ploidy are driven by condition-dependent gene effects. PLoS Biology. 2015; 13(5):e1002155. doi: 10.

1371/journal.pbio.1002155 PMID: 26011532

20. Sun S, Yang F, Tan G, Costanzo M, Oughtred R, Hirschman J, et al. An extended set of yeast-based

functional assays accurately identifies human disease mutations. Genome Res. 2016; 26(5):670–80.

doi: 10.1101/gr.192526.115 PMID: 26975778

21. Giaever G, Nislow C. The yeast deletion collection: a decade of functional genomics. Genetics. 2014;

197(2):451–65. doi: 10.1534/genetics.114.161620 PMID: 24939991

22. Smith AM, Heisler LE, Mellor J, Kaper F, Thompson MJ, Chee M, et al. Quantitative phenotyping via

deep barcode sequencing. Genome Res. 2009; 19(10):1836–42. doi: 10.1101/gr.093955.109 PMID:

19622793

23. Delneri D, Hoyle DC, Gkargkas K, Cross EJ, Rash B, Zeef L, et al. Identification and characterization

of high-flux-control genes of yeast through competition analyses in continuous cultures. Nat Genet.

2008; 40(1):113–7. doi: 10.1038/ng.2007.49 PMID: 18157128

24. Sopko R, Huang D, Preston N, Chua G, Papp B, Kafadar K, et al. Mapping pathways and phenotypes

by systematic gene overexpression. Mol Cell. 2006; 21(3):319–30. doi: 10.1016/j.molcel.2005.12.011

PMID: 16455487

Drivers of Adaptation

PLOS Genetics | DOI:10.1371/journal.pgen.1006339 October 11, 2016 21 / 24

http://dx.doi.org/10.1073/pnas.1323011111
http://www.ncbi.nlm.nih.gov/pubmed/24847077
http://dx.doi.org/10.1038/nature08480
http://dx.doi.org/10.1038/nature08480
http://www.ncbi.nlm.nih.gov/pubmed/19838166
http://dx.doi.org/10.1534/genetics.112.148502
http://dx.doi.org/10.1534/genetics.112.148502
http://www.ncbi.nlm.nih.gov/pubmed/23307898
http://dx.doi.org/10.1038/ng.280
http://dx.doi.org/10.1038/ng.280
http://www.ncbi.nlm.nih.gov/pubmed/19029899
http://dx.doi.org/10.1126/science.1212986
http://www.ncbi.nlm.nih.gov/pubmed/22282810
http://dx.doi.org/10.1371/journal.pbio.1001490
http://www.ncbi.nlm.nih.gov/pubmed/23431270
http://dx.doi.org/10.1093/oxfordjournals.molbev.a026009
http://dx.doi.org/10.1093/oxfordjournals.molbev.a026009
http://www.ncbi.nlm.nih.gov/pubmed/9718721
http://dx.doi.org/10.1016/s0140-6736(04)16767-6
http://www.ncbi.nlm.nih.gov/pubmed/15288742
http://dx.doi.org/10.1073/pnas.242624799
http://www.ncbi.nlm.nih.gov/pubmed/12446845
http://dx.doi.org/10.1038/nature11514
http://www.ncbi.nlm.nih.gov/pubmed/22992527
http://www.ncbi.nlm.nih.gov/pubmed/9192894
http://dx.doi.org/10.1534/genetics.112.142620
http://dx.doi.org/10.1534/genetics.112.142620
http://www.ncbi.nlm.nih.gov/pubmed/22714405
http://dx.doi.org/10.1371/journal.pgen.1000652
http://dx.doi.org/10.1371/journal.pgen.1000652
http://www.ncbi.nlm.nih.gov/pubmed/19763169
http://dx.doi.org/10.1371/journal.pgen.1002056
http://dx.doi.org/10.1371/journal.pgen.1002056
http://www.ncbi.nlm.nih.gov/pubmed/21552329
http://dx.doi.org/10.1371/journal.pbio.1002155
http://dx.doi.org/10.1371/journal.pbio.1002155
http://www.ncbi.nlm.nih.gov/pubmed/26011532
http://dx.doi.org/10.1101/gr.192526.115
http://www.ncbi.nlm.nih.gov/pubmed/26975778
http://dx.doi.org/10.1534/genetics.114.161620
http://www.ncbi.nlm.nih.gov/pubmed/24939991
http://dx.doi.org/10.1101/gr.093955.109
http://www.ncbi.nlm.nih.gov/pubmed/19622793
http://dx.doi.org/10.1038/ng.2007.49
http://www.ncbi.nlm.nih.gov/pubmed/18157128
http://dx.doi.org/10.1016/j.molcel.2005.12.011
http://www.ncbi.nlm.nih.gov/pubmed/16455487


25. Makanae K, Kintaka R, Makino T, Kitano H, Moriya H. Identification of dosage-sensitive genes in Sac-

charomyces cerevisiae using the genetic tug-of-war method. Genome Res. 2013; 23(2):300–11. doi:

10.1101/gr.146662.112 PMID: 23275495

26. Gelperin DM, White MA, Wilkinson ML, Kon Y, Kung LA, Wise KJ, et al. Biochemical and genetic anal-

ysis of the yeast proteome with a movable ORF collection. Genes Dev. 2005; 19(23):2816–26. doi: 10.

1101/gad.1362105 PMID: 16322557

27. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, et al. The genetic landscape of a

cell. Science. 2010; 327(5964):425–31. doi: 10.1126/science.1180823 PMID: 20093466

28. Douglas AC, Smith AM, Sharifpoor S, Yan Z, Durbic T, Heisler LE, et al. Functional analysis with a bar-

coder yeast gene overexpression system. G3 (Bethesda). 2012; 2(10):1279–89. doi: 10.1534/g3.112.

003400 PMID: 23050238

29. Ho CH, Magtanong L, Barker SL, Gresham D, Nishimura S, Natarajan P, et al. A molecular barcoded

yeast ORF library enables mode-of-action analysis of bioactive compounds. Nat Biotechnol. 2009; 27

(4):369–77. doi: 10.1038/nbt.1534 PMID: 19349972

30. Magtanong L, Ho CH, Barker SL, Jiao W, Baryshnikova A, Bahr S, et al. Dosage suppression genetic

interaction networks enhance functional wiring diagrams of the cell. Nat Biotechnol. 2011; 29(6):505–

11. doi: 10.1038/nbt.1855 PMID: 21572441

31. Tong AH, Boone C. Synthetic genetic array analysis in Saccharomyces cerevisiae. Methods Mol Biol.

2006; 313:171–92. PMID: 16118434

32. Yan Z, Costanzo M, Heisler LE, Paw J, Kaper F, Andrews BJ, et al. Yeast Barcoders: a chemogenomic

application of a universal donor-strain collection carrying bar-code identifiers. Nat Methods. 2008; 5

(8):719–25. doi: 10.1038/nmeth.1231 PMID: 18622398

33. Hillenmeyer ME, Ericson E, Davis RW, Nislow C, Koller D, Giaever G. Systematic analysis of genome-

wide fitness data in yeast reveals novel gene function and drug action. Genome Biol. 2010; 11(3):R30.

doi: 10.1186/gb-2010-11-3-r30 PMID: 20226027

34. Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S, Lee W, et al. The chemical genomic por-

trait of yeast: uncovering a phenotype for all genes. Science. 2008; 320(5874):362–5. doi: 10.1126/

science.1150021 PMID: 18420932

35. Suzuki Y, St Onge RP, Mani R, King OD, Heilbut A, Labunskyy VM, et al. Knocking out multigene

redundancies via cycles of sexual assortment and fluorescence selection. Nat Methods. 2011; 8

(2):159–64. doi: 10.1038/nmeth.1550 PMID: 21217751

36. Qian W, Ma D, Xiao C, Wang Z, Zhang J. The genomic landscape and evolutionary resolution of antag-

onistic pleiotropy in yeast. Cell Rep. 2012; 2(5):1399–410. doi: 10.1016/j.celrep.2012.09.017 PMID:

23103169

37. Paquin C, Adams J. Frequency of fixation of adaptive mutations is higher in evolving diploid than hap-

loid yeast populations. Nature. 1983; 302(5908):495–500. doi: 10.1038/302495a0 PMID: 6339947

38. Otto S. The role of deleterious and beneficial mutations in the evolution of ploidy levels. Lectures on

Mathematics in the Life Sciences. 1994;25.

39. Gresham D, Desai MM, Tucker CM, Jenq HT, Pai DA, Ward A, et al. The repertoire and dynamics of

evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet. 2008; 4

(12):e1000303. doi: 10.1371/journal.pgen.1000303 PMID: 19079573

40. Payen C, Di Rienzi SC, Ong GT, Pogachar JL, Sanchez JC, Sunshine AB, et al. The Dynamics of

Diverse Segmental Amplifications in Populations of Saccharomyces cerevisiae Adapting to Strong

Selection. G3 (Bethesda). 2014; 4(3):399–409. doi: 10.1534/g3.113.009365 PMID: 24368781

41. Culotta VC, Lin SJ, Schmidt P, Klomp LW, Casareno RL, Gitlin J. Intracellular pathways of copper traf-

ficking in yeast and humans. Adv Exp Med Biol. 1999; 448:247–54. PMID: 10079832

42. Portnoy ME, Liu XF, Culotta VC. Saccharomyces cerevisiae expresses three functionally distinct

homologues of the nramp family of metal transporters. Mol Cell Biol. 2000; 20(21):7893–902. doi: 10.

1128/mcb.20.21.7893-7902.2000 PMID: 11027260

43. Wenger JW, Piotrowski J, Nagarajan S, Chiotti K, Sherlock G, Rosenzweig F. Hunger artists: yeast

adapted to carbon limitation show trade-offs under carbon sufficiency. PLoS Genet. 2011; 7(8):

e1002202. doi: 10.1371/journal.pgen.1002202 PMID: 21829391

44. Wray GA. The evolutionary significance of cis-regulatory mutations. Nat Rev Genet. 2007; 8(3):206–

16. doi: 10.1038/nrg2063 PMID: 17304246

45. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al. A program for annotating and pre-

dicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila mel-

anogaster strain w1118; iso-2; iso-3. Fly. 2012; 6(2):80–92. doi: 10.4161/fly.19695 PMID: 22728672

Drivers of Adaptation

PLOS Genetics | DOI:10.1371/journal.pgen.1006339 October 11, 2016 22 / 24

http://dx.doi.org/10.1101/gr.146662.112
http://www.ncbi.nlm.nih.gov/pubmed/23275495
http://dx.doi.org/10.1101/gad.1362105
http://dx.doi.org/10.1101/gad.1362105
http://www.ncbi.nlm.nih.gov/pubmed/16322557
http://dx.doi.org/10.1126/science.1180823
http://www.ncbi.nlm.nih.gov/pubmed/20093466
http://dx.doi.org/10.1534/g3.112.003400
http://dx.doi.org/10.1534/g3.112.003400
http://www.ncbi.nlm.nih.gov/pubmed/23050238
http://dx.doi.org/10.1038/nbt.1534
http://www.ncbi.nlm.nih.gov/pubmed/19349972
http://dx.doi.org/10.1038/nbt.1855
http://www.ncbi.nlm.nih.gov/pubmed/21572441
http://www.ncbi.nlm.nih.gov/pubmed/16118434
http://dx.doi.org/10.1038/nmeth.1231
http://www.ncbi.nlm.nih.gov/pubmed/18622398
http://dx.doi.org/10.1186/gb-2010-11-3-r30
http://www.ncbi.nlm.nih.gov/pubmed/20226027
http://dx.doi.org/10.1126/science.1150021
http://dx.doi.org/10.1126/science.1150021
http://www.ncbi.nlm.nih.gov/pubmed/18420932
http://dx.doi.org/10.1038/nmeth.1550
http://www.ncbi.nlm.nih.gov/pubmed/21217751
http://dx.doi.org/10.1016/j.celrep.2012.09.017
http://www.ncbi.nlm.nih.gov/pubmed/23103169
http://dx.doi.org/10.1038/302495a0
http://www.ncbi.nlm.nih.gov/pubmed/6339947
http://dx.doi.org/10.1371/journal.pgen.1000303
http://www.ncbi.nlm.nih.gov/pubmed/19079573
http://dx.doi.org/10.1534/g3.113.009365
http://www.ncbi.nlm.nih.gov/pubmed/24368781
http://www.ncbi.nlm.nih.gov/pubmed/10079832
http://dx.doi.org/10.1128/mcb.20.21.7893-7902.2000
http://dx.doi.org/10.1128/mcb.20.21.7893-7902.2000
http://www.ncbi.nlm.nih.gov/pubmed/11027260
http://dx.doi.org/10.1371/journal.pgen.1002202
http://www.ncbi.nlm.nih.gov/pubmed/21829391
http://dx.doi.org/10.1038/nrg2063
http://www.ncbi.nlm.nih.gov/pubmed/17304246
http://dx.doi.org/10.4161/fly.19695
http://www.ncbi.nlm.nih.gov/pubmed/22728672


46. Gerstein AC, Kuzmin A, Otto SP. Loss-of-heterozygosity facilitates passage through Haldane’s sieve

for Saccharomyces cerevisiae undergoing adaptation. Nat Commun. 2014; 5:3819. doi: 10.1038/

ncomms4819 PMID: 24804896

47. Deutschbauer AM, Jaramillo DF, Proctor M, Kumm J, Hillenmeyer ME, Davis RW, et al. Mechanisms

of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics. 2005; 169(4):1915–25.

doi: 10.1534/genetics.104.036871 PMID: 15716499

48. Mwenifumbo JC, Marra MA. Cancer genome-sequencing study design. Nat Rev Genet. 2013; 14

(5):321–32. doi: 10.1038/nrg3445 PMID: 23594910

49. Gonzalez-Perez A, Lopez-Bigas N. Functional impact bias reveals cancer drivers. Nucleic Acids Res.

2012; 40(21):e169. doi: 10.1093/nar/gks743 PMID: 22904074

50. Behjati S, Tarpey PS, Sheldon H, Martincorena I, Van Loo P, Gundem G, et al. Recurrent PTPRB and

PLCG1 mutations in angiosarcoma. Nat Genet. 2014; 46(4):376–9. doi: 10.1038/ng.2921 PMID:

24633157

51. Notley-McRobb L, Ferenci T. Experimental analysis of molecular events during mutational periodic

selections in bacterial evolution. Genetics. 2000; 156(4):1493–501. PMID: 11102352

52. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational hetero-

geneity in cancer and the search for new cancer-associated genes. Nature. 2013; 499(7457):214–8.

doi: 10.1038/nature12213 PMID: 23770567

53. Flick K, Chapman-Shimshoni D, Stuart D, Guaderrama M, Wittenberg C. Regulation of cell size by glu-

cose is exerted via repression of the CLN1 promoter. Mol Cell Biol. 1998; 18(5):2492–501. doi: 10.

1128/mcb.18.5.2492 PMID: 9566870

54. Chun S, Fay JC. Evidence for hitchhiking of deleterious mutations within the human genome. PLoS

Genet. 2011; 7(8):e1002240. doi: 10.1371/journal.pgen.1002240 PMID: 21901107

55. Burke MK. How does adaptation sweep through the genome? Insights from long-term selection experi-

ments. Proceedings of the Royal Society B-Biological Sciences. 2012; 279(1749):5029–38. doi: 10.

1098/rspb.2012.0799 PMID: 22833271

56. Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans SJ. Empirical fitness landscapes reveal accessible evolu-

tionary paths. Nature. 2007; 445(7126):383–6. doi: 10.1038/nature05451 PMID: 17251971

57. Rich MS, Payen C, Rubin AF, Ong GT, Sanchez MR, Yachie N, et al. Comprehensive Analysis of the

SUL1 Promoter of Saccharomyces cerevisiae. Genetics. 2016; 203(1):191–202. doi: 10.1534/

genetics.116.188037 PMID: 26936925

58. O’Connell KF, Baker RE. Possible cross-regulation of phosphate and sulfate metabolism in Saccharo-

myces cerevisiae. Genetics. 1992; 132(1):63–73. PMID: 1398064

59. Ben-Shitrit T, Yosef N, Shemesh K, Sharan R, Ruppin E, Kupiec M. Systematic identification of gene

annotation errors in the widely used yeast mutation collections. Nat Methods. 2012; 9(4):373–8. doi:

10.1038/nmeth.1890 PMID: 22306811

60. Yaniv M. Chromatin remodeling: from transcription to cancer. Cancer genetics. 2014. doi: 10.1016/j.

cancergen.2014.03.006

61. Chung N, Jenkins G, Hannun YA, Heitman J, Obeid LM. Sphingolipids signal heat stress-induced ubi-

quitin-dependent proteolysis. J Biol Chem. 2000; 275(23):17229–32. doi: 10.1074/jbc.C000229200

PMID: 10764732

62. de Visser JA, Krug J. Empirical fitness landscapes and the predictability of evolution. Nat Rev Genet.

2014; 15(7):480–90. doi: 10.1038/nrg3744 PMID: 24913663

63. Hall DW, Mahmoudizad R, Hurd AW, Joseph SB. Spontaneous mutations in diploid Saccharomyces

cerevisiae: another thousand cell generations. Genetics research. 2008; 90(3):229–41. doi: 10.1017/

S0016672308009324 PMID: 18593510

64. Gerstein AC. Mutational effects depend on ploidy level: all else is not equal. Biol Lett. 2013; 9

(1):20120614. doi: 10.1098/rsbl.2012.0614 PMID: 23054913

65. Tang YC, Amon A. Gene copy-number alterations: a cost-benefit analysis. Cell. 2013; 152(3):394–

405. doi: 10.1016/j.cell.2012.11.043 PMID: 23374337

66. Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, Dunham MJ, et al. Effects of aneuploidy on

cellular physiology and cell division in haploid yeast. Science. 2007; 317(5840):916–24. doi: 10.1126/

science.1142210 PMID: 17702937

67. Fowler DM, Araya CL, Fleishman SJ, Kellogg EH, Stephany JJ, Baker D, et al. High-resolution map-

ping of protein sequence-function relationships. Nat Methods. 2010; 7(9):741–6. doi: 10.1038/nmeth.

1492 PMID: 20711194

Drivers of Adaptation

PLOS Genetics | DOI:10.1371/journal.pgen.1006339 October 11, 2016 23 / 24

http://dx.doi.org/10.1038/ncomms4819
http://dx.doi.org/10.1038/ncomms4819
http://www.ncbi.nlm.nih.gov/pubmed/24804896
http://dx.doi.org/10.1534/genetics.104.036871
http://www.ncbi.nlm.nih.gov/pubmed/15716499
http://dx.doi.org/10.1038/nrg3445
http://www.ncbi.nlm.nih.gov/pubmed/23594910
http://dx.doi.org/10.1093/nar/gks743
http://www.ncbi.nlm.nih.gov/pubmed/22904074
http://dx.doi.org/10.1038/ng.2921
http://www.ncbi.nlm.nih.gov/pubmed/24633157
http://www.ncbi.nlm.nih.gov/pubmed/11102352
http://dx.doi.org/10.1038/nature12213
http://www.ncbi.nlm.nih.gov/pubmed/23770567
http://dx.doi.org/10.1128/mcb.18.5.2492
http://dx.doi.org/10.1128/mcb.18.5.2492
http://www.ncbi.nlm.nih.gov/pubmed/9566870
http://dx.doi.org/10.1371/journal.pgen.1002240
http://www.ncbi.nlm.nih.gov/pubmed/21901107
http://dx.doi.org/10.1098/rspb.2012.0799
http://dx.doi.org/10.1098/rspb.2012.0799
http://www.ncbi.nlm.nih.gov/pubmed/22833271
http://dx.doi.org/10.1038/nature05451
http://www.ncbi.nlm.nih.gov/pubmed/17251971
http://dx.doi.org/10.1534/genetics.116.188037
http://dx.doi.org/10.1534/genetics.116.188037
http://www.ncbi.nlm.nih.gov/pubmed/26936925
http://www.ncbi.nlm.nih.gov/pubmed/1398064
http://dx.doi.org/10.1038/nmeth.1890
http://www.ncbi.nlm.nih.gov/pubmed/22306811
http://dx.doi.org/10.1016/j.cancergen.2014.03.006
http://dx.doi.org/10.1016/j.cancergen.2014.03.006
http://dx.doi.org/10.1074/jbc.C000229200
http://www.ncbi.nlm.nih.gov/pubmed/10764732
http://dx.doi.org/10.1038/nrg3744
http://www.ncbi.nlm.nih.gov/pubmed/24913663
http://dx.doi.org/10.1017/S0016672308009324
http://dx.doi.org/10.1017/S0016672308009324
http://www.ncbi.nlm.nih.gov/pubmed/18593510
http://dx.doi.org/10.1098/rsbl.2012.0614
http://www.ncbi.nlm.nih.gov/pubmed/23054913
http://dx.doi.org/10.1016/j.cell.2012.11.043
http://www.ncbi.nlm.nih.gov/pubmed/23374337
http://dx.doi.org/10.1126/science.1142210
http://dx.doi.org/10.1126/science.1142210
http://www.ncbi.nlm.nih.gov/pubmed/17702937
http://dx.doi.org/10.1038/nmeth.1492
http://dx.doi.org/10.1038/nmeth.1492
http://www.ncbi.nlm.nih.gov/pubmed/20711194


68. Thompson O, Edgley M, Strasbourger P, Flibotte S, Ewing B, Adair R, et al. The million mutation proj-

ect: a new approach to genetics in Caenorhabditis elegans. Genome Res. 2013; 23(10):1749–62. doi:

10.1101/gr.157651.113 PMID: 23800452

69. Bloom-Ackermann Z, Navon S, Gingold H, Towers R, Pilpel Y, Dahan O. A comprehensive tRNA dele-

tion library unravels the genetic architecture of the tRNA pool. PLoS Genet. 2014; 10(1):e1004084.

doi: 10.1371/journal.pgen.1004084 PMID: 24453985

70. Pepin KM, Wichman HA. Variable epistatic effects between mutations at host recognition sites in

phiX174 bacteriophage. Evolution. 2007; 61(7):1710–24. doi: 10.1111/j.1558-5646.2007.00143.x

PMID: 17598750

71. Elena SF, Lenski RE. Test of synergistic interactions among deleterious mutations in bacteria. Nature.

1997; 390(6658):395–8. PMID: 9389477

72. Jasnos L, Korona R. Epistatic buffering of fitness loss in yeast double deletion strains. Nat Genet.

2007; 39(4):550–4. doi: 10.1038/ng1986 PMID: 17322879

73. Kryazhimskiy S, Rice DP, Jerison ER, Desai MM. Microbial evolution. Global epistasis makes adapta-

tion predictable despite sequence-level stochasticity. Science. 2014; 344(6191):1519–22. doi: 10.

1126/science.1250939 PMID: 24970088

74. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, et al. The genetic landscape of a

cell. Science. 327(5964):425–31. doi: 10.1126/science.1180823 PMID: 20093466

75. Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, et al. Global mapping of the yeast genetic interac-

tion network. Science. 2004; 303(5659):808–13. doi: 10.1126/science.1091317 PMID: 14764870

76. Gresham D, Usaite R, Germann SM, Lisby M, Botstein D, Regenberg B. Adaptation to diverse nitro-

gen-limited environments by deletion or extrachromosomal element formation of the GAP1 locus. Proc

Natl Acad Sci U S A. 2010; 107(43):18551–6. doi: 10.1073/pnas.1014023107 PMID: 20937885

77. Hoffman CS, Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous

plasmids for transformation of Escherichia coli. Gene. 1987; 57(2–3):267–72. doi: 10.1016/0378-1119

(87)90131-4 PMID: 3319781

78. Kampstra P. Beanplot: A Boxplot Alternative for Visual Comparison of Distributions. Journal of Statisti-

cal Software. 2008; 28(1):1–9. doi: 10.18637/jss.v028.c01

79. Teng X, Dayhoff-Brannigan M, Cheng WC, Gilbert CE, Sing CN, Diny NL, et al. Genome-wide conse-

quences of deleting any single gene. Mol Cell. 2013; 52(4):485–94. doi: 10.1016/j.molcel.2013.09.026

PMID: 24211263

Drivers of Adaptation

PLOS Genetics | DOI:10.1371/journal.pgen.1006339 October 11, 2016 24 / 24

http://dx.doi.org/10.1101/gr.157651.113
http://www.ncbi.nlm.nih.gov/pubmed/23800452
http://dx.doi.org/10.1371/journal.pgen.1004084
http://www.ncbi.nlm.nih.gov/pubmed/24453985
http://dx.doi.org/10.1111/j.1558-5646.2007.00143.x
http://www.ncbi.nlm.nih.gov/pubmed/17598750
http://www.ncbi.nlm.nih.gov/pubmed/9389477
http://dx.doi.org/10.1038/ng1986
http://www.ncbi.nlm.nih.gov/pubmed/17322879
http://dx.doi.org/10.1126/science.1250939
http://dx.doi.org/10.1126/science.1250939
http://www.ncbi.nlm.nih.gov/pubmed/24970088
http://dx.doi.org/10.1126/science.1180823
http://www.ncbi.nlm.nih.gov/pubmed/20093466
http://dx.doi.org/10.1126/science.1091317
http://www.ncbi.nlm.nih.gov/pubmed/14764870
http://dx.doi.org/10.1073/pnas.1014023107
http://www.ncbi.nlm.nih.gov/pubmed/20937885
http://dx.doi.org/10.1016/0378-1119(87)90131-4
http://dx.doi.org/10.1016/0378-1119(87)90131-4
http://www.ncbi.nlm.nih.gov/pubmed/3319781
http://dx.doi.org/10.18637/jss.v028.c01
http://dx.doi.org/10.1016/j.molcel.2013.09.026
http://www.ncbi.nlm.nih.gov/pubmed/24211263

