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Abstract

Despite the fundamental importance of mutation rate as a driving force in evolution and disease risk, common methods to assay mutation
rate are time-consuming and tedious. Established methods such as fluctuation tests and mutation accumulation experiments are low-
throughput and often require significant optimization to ensure accuracy. We established a new method to determine the mutation rate of
many strains simultaneously by tracking mutation events in a chemostat continuous culture device and applying deep sequencing to link
mutations to alleles of a DNA-repair gene. We applied this method to assay the mutation rate of hundreds of Saccharomyces cerevisiae
strains carrying mutations in the gene encoding Msh2, a DNA repair enzyme in the mismatch repair pathway. Loss-of-function mutations in
MSH2 are associated with hereditary nonpolyposis colorectal cancer, an inherited disorder that increases risk for many different cancers.
However, the vast majority of MSH2 variants found in human populations have insufficient evidence to be classified as either pathogenic or
benign. We first benchmarked our method against Luria–Delbrück fluctuation tests using a collection of published MSH2 missense variants.
Our pooled screen successfully identified previously characterized nonfunctional alleles as high mutators. We then created an additional
185 human missense variants in the yeast ortholog, including both characterized and uncharacterized alleles curated from ClinVar
and other clinical testing data. In a set of alleles of known pathogenicity, our assay recapitulated ClinVar’s classification; we then estimated
pathogenicity for 157 variants classified as uncertain or conflicting reports of significance. This method is capable of studying the mutation
rate of many microbial species and can be applied to problems ranging from the generation of high-fidelity polymerases to measuring the
frequency of antibiotic resistance emergence.

Keywords: mutation rate; chemostat; MSH2; yeast

Introduction
Mutation rate is the timer for many different error-prone pro-
cesses: how many cycles of PCR before the polymerase makes a
mistake, how long before the bacterial infection becomes resis-
tant to existing medications, or how quickly DNA damage will re-
sult in the uncontrolled growth of a cancerous tumor. An
example of the latter is germ line variants in mismatch repair
(MMR) pathway genes. These have strong implications for human
health and are responsible for the cancer risk syndrome known
as hereditary nonpolyposis colorectal cancer (HNPCC) (Lynch
et al. 2015; Peltomäki 2016). In patients carrying pathogenic
alleles, increased surveillance can detect cancers early, improv-
ing treatment outcomes(Gupta et al. 2019). There are a large num-
ber of human MMR variants, and many are classified as variants
of uncertain significance (VUS) (Starita et al. 2017). Functional
data obtained from model organisms can be used to assess po-
tential pathogenicity of these variants (Richards et al. 2015;

Gordon et al. 2019). As such, urgently needed is a new way to
screen variants to determine whether they increase mutation
rate, which may contribute to their pathogenicity.

Existing methods for measuring mutation rate are tedious and
not scalable for the challenge of functionally testing hundreds or
thousands of VUS. Methods to study mutation rate all have their
advantages and disadvantages (Foster 2006). In microbial sys-
tems, Luria–Delbrück fluctuation tests, mutation accumulation
lines, and Novick–Szilard chemostat mutation accumulation
experiments are the most widely used (Luria and Delbrück 1943;
Lynch et al. 2008). These methods currently require initiating pop-
ulations with single clones, which necessarily limits the ability to
multiplex experiments. For mutants in MMR, there are some ad-
ditional specific methods such as measuring sensitivity to 6-thio-
guanine or N-methyl-N0-nitro-N-nitrosoguanidine, which
correlates with functionality of subunits of the MMR complex in-
cluding Msh2 and Mlh1 (Drost et al. 2013; Houlleberghs et al. 2017;
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Bouvet et al. 2019; Jia et al. 2020). Genome editing methods such
as CRISPR-Cas9 provide a convenient way to introduce variants
into human cells, where signatures of MMR deficiency can then
be tracked (Rath et al. 2019). Another alternative is cell-free sys-
tems, which allow for using the human protein in an assay that
checks for ability to repair DNA (Drost et al. 2010, 2012, 2019).
While this provides an easy way to see all mutations caused by
errors in replication, each variant must be expressed and purified
separately, and this strategy is not amenable to being pooled.
Also, while these systems work well for MMR complex proteins,
they do not generalize to mutation rate variability caused by dys-
function in other protein complexes. Computational strategies
theoretically could scale to all possible sites in all proteins of in-
terest and have been demonstrated to be good predictors of
destabilizing variants (Nielsen et al. 2017; Abildgaard et al. 2019;
Stein et al. 2019). However, they still require further validation us-
ing lower throughput methods. To address some of these prob-
lems, we wanted to generate a new experimental protocol to do
multiplexed, direct assessment of mutation rate that was amena-
ble to any molecular pathways for which mutations can be a
read out in an easy to culture and genetically tractable organism,
Saccharomyces cerevisiae.

In addition to ease of use, yeast is a good model system to
study effects on MMR because much of the sequence and func-
tion of the pathway is conserved between humans and yeast
(Boiteux and Jinks-Robertson 2013). Indeed, many discoveries
about MMR originate in studies of S. cerevisiae, as the MMR com-
plex is more highly conserved with its human orthologs than that
of Escherichia coli (Strand et al. 1993, 1995). In addition to the gen-
eral biology of the MMR complex, yeast has been used to deter-
mine the mutation rate of MMR alleles using traditional
fluctuation assays, mutation accumulation lines, qualitative
patch assays, and fluorescence-based assays (Drotschmann et al.
1999; Gammie et al. 2007; Demogines et al. 2008; Lang and Murray
2008; Martinez and Kolodner 2010; Lang et al. 2013; Shor et al.
2019). These assays all test the full functionality of Msh2; how-
ever, none of them allow for pooled assessment of many alleles
simultaneously. Although medium-throughput assays exist that
take advantage of automated liquid-handling systems(Gou et al.
2019), these still require considerable effort if studying the effect
on mutation rate of many different alleles and require maintain-
ing clonal populations.

In an effort to overcome scaling problems inherent to other
methods for measuring mutation rate, we have developed a
chemostat-based assay that utilizes pools of variants to assay
hundreds of alleles simultaneously. The chemostat is a continu-
ous culture device that maintains a constant population size over
time by diluting out an actively growing culture at the same rate
at which it is growing—defined as steady state. Chemostat condi-
tions have a limiting nutrient, the metabolite which is at a level
such that the microbe’s growth rate is slowed but not stopped.
This combination of slower growth rate and stable population
size makes this device ideal for studies determining the rate of
biological processes. Novick and Szilard pioneered the use of
chemostats to determine mutation rate over 70 years ago, and
the approach has been used to study microbial mutation rates in
many studies since (Novick and Szilard 1950, 1951; Fox 1955, p. 1;
Kubitschek and Bendigkeit 1964; Paquin and Adams 1983). The
continuous dilution in the chemostat means an increase in the
frequency of a neutral mutation is a result of de novo mutation,
as opposed to other methods, where such an increase could be
explained by both de novo mutation and exponential growth. If
the neutral mutation is also selectable, such as with some types

of drug resistance (e.g., canavanine resistance in yeast), the mu-
tation rate can be calculated by simply tracking the frequency of
resistance over time. Combining this very old technique with
next-generation sequencing opens up the possibility for high-
throughput study of pools of allelic variants. While studies using
traditional fluctuation assays have many replicates of mutation
frequency—the number of mutants in a population—they tend
to only provide one or two estimates mutation rate—the rate of
increase of mutation frequency. We wanted a method in which
we could provide many mutation rate calculations at once. We
applied this new method to study mutation rate differences
caused by missense SNP variants in MSH2, a gene that is associ-
ated with HNPCC. Msh2 is a part of the MMR complex, which in
combination with Msh3, Msh6, Mlh1, and Pms2—named Pms1 in
S. cerevisiae—binds and fixes small mismatches and indels
(Boiteux and Jinks-Robertson 2013). Msh2 is an integral part of
the recognition complex (Edelbrock et al. 2013). We completed a
proof of principle with previously published variants of MSH2 and
found that the pooled assay recapitulated the results of tradi-
tional Luria–Delbrück fluctuation tests, qualitative patch
assays, and yeast two-hybrid assays (Gammie et al. 2007). We
then assayed an additional 185 MSH2 missense variants curated
from ClinVar, a public repository of clinical variant interpreta-
tions derived from diagnostic genetic testing. To do so, we
recreated these variants in the homologous sites of yeast MSH2,
barcoded them along with control WT clones, and measured
their mutation rates in a pooled format. Of the 28 variants of
known pathogenicity, 100% recapitulated the functional conse-
quence implied by previous clinical interpretation. We then
examined 157 VUS from ClinVar and identified 50 variants with
significantly different mutation rates from WT as measured by
our assay. In addition to ClinVar classifications, data were also
compared to tumor sequencing in cancer patients (Shirts et al.
2018); of the 25 VUS for which tumor data were available, 64%
had clinical findings that were consistent with our functional
data. In total, our data set represents �6000 individual muta-
tion rate calculations. These data taken together show that
our new multiplexed mutation rate assay is an accurate and
scalable assay to study the mutation rate of many strains in a
pooled format.

Materials and methods
Growth in the chemostat
For individually inoculated chemostats, 1 ml of overnight culture
was inoculated into 230–245 ml of glucose-limited media (cal-
cium chloride 0.1 g/L, sodium chloride 0.1 g/L, magnesium sulfate
heptahydrate 0.5 g/L, potassium phosphate monohydrate 1 g/L,
ammonium sulfate 5 g/L, glucose 0.8 g/L). Pools were thawed
from the freezer and inoculated straight into the chemostat.
Cultures were kept at 30�C and allowed 2 days to grow to satu-
ration and the pumps were turned on to a rate of 40 ml/hour or
�five replacement volumes per day. Chemostats were allowed
to reach steady state as determined by optical density and later
confirmed by stabilization of CFU counts. Samples were then
collected starting at �15 generations. Sampling the nonselective
population involved spinning down �2� 108 cells, as well as
plating �200 cells onto SC-histidine for accurate counts.
For each chemostat, to determine the number of canavanine-
resistant mutants, sufficient culture to reach an estimated
countable number of colonies (�200) was plated onto SC-argi-
nine-serine-histidine þ 60 mg/L canavanine to select for loss-of-
function (LOF) mutations in CAN1. For pools, �6� 108 cells were
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plated, in addition to those used for counts, onto 15 cm SC-
histidine þ 60 mg/ml canavanine plates and then allowed to
grow at 30�C for 3 days at which point they were scraped for
downstream analysis.

Generation of sequencing libraries
For both the nonselective and mutant population, cells were vor-
texed vigorously with acid washed beads in resuspension buffer
for 3 minutes and then put through the Mini-prep Wizard kit.
They were then concentrated using the PCR cleanup Wizard kit.

For unbarcoded pools, MSH2 was amplified from the plasmid
vector using 15 rounds of PCR to prevent overamplification. Then
Nextera sequencing libraries were generated using the Nextera-
XT kit. The average library size was 500 bp and sequenced using a
Nextera 500 with paired end 150 bp reads at a depth of �30,000
reads over the length of MSH2. The run was conducted according
to the manufacturer’s specifications.

For barcoded pools, PCR amplification of the amplicon con-
taining the barcode was done using 15–22 cycles of PCR using
custom Nextera Primers, listed in Supplementary Table S3. A
comparison of PCR replicate barcode values is in Supplementary
Figure S5. Sufficient amplification was determined by qPCR. The
amplicon was purified using dual sided Sepharose bead cleanup
to isolate the 250 bp amplicon. Samples were then pooled at
equal molar ratios and run on the NextSeq 550 using paired end
reads of both 75 or 150 cycles using custom read and index pri-
mers (Supplementary Table S3) at a read depth of �1.7 million
reads for the mutant population and 0.5 million reads for the
nonselective population. Number of reads roughly corresponded
with the number of colonies collected for the mutant pool and
100� coverage of the known number of barcodes for the nonse-
lective population.

Data analysis of direct sequencing of unbarcoded
plasmid pools
Reads were demultiplexed using bcl2, allowing for no mis-
matches in the index read. Reads were then processed first by
Trim Galore (Krueger 2019) to remove adaptors, then reads were
collapsed using PEAR (Zhang et al. 2014) then aligned to the yeast
MSH2 sequence using BowTie2 (Langmead and Salzberg 2012), a
SAM file was generated using Samtools (Li et al. 2009), and then
the make up at each base pair was generated using Pysamstats
(Miles 2019). Data were manipulated in Excel, and then data
points were graphed in R (Supplementary Files S2 and S3) using
ggplot (Wickham 2009).

Data analysis pipeline for barcoded pools
Reads were shortened to the barcode length using a custom py-
thon script, fed into PEAR to combine forward and reverse reads,
then fed into Enrich (Fowler et al. 2011) to count barcodes. These
counts were fed into a custom R script (Supplementary File S2)
which manipulated data and plotted using ggplot2. All data re-
quired to run the custom R script are in Supplementary File S3, in
tabs labeled with the variable names.

Competition of msh2D and WT
GFP driven by the TEF2 promoter was introduced to the msh2D

and his3D strain by mating. Competitions were set up by individ-
ually inoculating 20 ml glucose limited chemostats with 1 ml of
saturated culture of each stated strain. The strains were
allowed to grow up for 2 days before the pumps were turned on.
After reaching steady state after �10 generations, cultures were
mixed half and half, and GFP percentage was monitored twice a

day via flow cytometry. Fitness effects were calculated by taking
the slope of the ln of the GFP-tagged to non-GFP-tagged strains
over time.

Making of unbarcoded pools
Plasmid DNA was extracted from E. coli strains sent from Alison
Gammie (Gammie et al. 2007), pooled, and used to transform
YMD4328: FY4 msh2D and his3D to �20� coverage.

Mapping human variants on the yeast Msh2
protein
Variants in human MSH2 found in ClinVar were mapped to the
yeast MSH2 sequence.

Putative functional alleles uncovered in humans were adapted
for testing in S. cerevisiae using a pairwise protein sequence align-
ment of the two orthologs. The human MSH2 protein was aligned
(NP_000242.1, uniprot: P43246) with the orthologous Msh2 in
S. cerevisiae (strain S288c, uniprot: P25847) using UniProt’s Clustal
Omega webtool with default parameters (https://www.uniprot.
org/align/). The pairwise alignment was validated by comparing
with similar human-to-yeast missense allele adaptations in the
literature (Gammie et al. 2007).

Generating barcoded variants
Variants containing a homolog within the yeast allele were then
ordered as gene products from Twist Biosciences. The gene prod-
ucts were ligated into the pRS413 vector containing the yeast
MSH2 promoter using Gibson and terminator and used to trans-
form DH5a cells at 30X coverage. DNA was extracted using the
Mira-Prep protocol (Pronobis et al. 2016) and then digested with
SacI to linearize. A barcode along with randomized sequence
were inserted into the linearized vector using Gibson assembly
and then used to transform DH5a cells. Transformants were col-
lected such that there was 5X barcode coverage for each allele.
DNA was extracted again using the Mira-prep protocol and
digested with SacI to linearize any unbarcoded alleles and trans-
formed once more to take advantage of E. coli’s inability to
be transformed by linear DNA that does not have homology
overhangs. Colony PCR was done and 0% of clones contained no
barcode and �6% contained 2–3 barcodes. DNA was once again
extracted with the Mira-Prep protocol and then used to transform
YMD4328: FY4 msh2D and his3D flo1D FY4. The flo1D is present to
reduce the prevalence of flocs (Hope et al. 2017). Transformants
were collected such that there was 20X coverage of each barcode.
These were then pooled for future experiments.

Fluctuation assay validation
For the chosen validated alleles, the strain construction was the
same as the barcoded alleles except the variants were kept sepa-
rate and no barcode was inserted. Fluctuation assays were
performed as described in Lang (2018), Lea and Coulson (1949),
and Luria and Delbrück (1943). Briefly, each variant was grown
up to saturation in SC-histidine þ 2% glucose and then diluted
1:10,000 in either SC-histidine þ 2% glucose for WT-like alleles or
SC-histidine þ 0.1% glucose for null-like alleles. The diluted cells
were placed in a 96-well plate—25 ml for null like alleles, 50 ml for
WT-like—covered with Breathe-Easy sealing membrane, and
allowed to incubate at 30�C for 48 hours, without shaking.
Twenty-four wells selected from across the plate were pooled to
determine the average total number of cells, and 68 cultures
were plated onto SC-arginine-serine-histidine þ 60 mg/L canava-
nine to select for LOF mutations in CAN1. The four corner wells
were omitted from analysis due to evaporation. Mutation rate
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was estimated by using traditional P0 method (Luria and
Delbrück 1943) as well as with the rSalvador package (Zheng
2017) that uses the Lea–Coulson model (Lea and Coulson 1949;
Ma et al. 1992). This package was implemented as described in
Jiang et al. (2021).

Pac-bio analysis
Plasmid fragments containing the barcode and variant were iso-
lated from E. coli using the Wizard mini-prep kit, amplified using
PCR with Kapa-HiFi, and cleaned up by digesting with DpnI and
purifying with Ampure beads. Fragments were prepared for PacBio
sequencing using the SMRTbellTM Template Prep Kit 1.0 (Pacific
Biosciences) and sent to University of Washington PacBio
Sequencing Services for sequencing and Sequel II circular consen-
sus sequence (CCS) analysis(Wenger et al. 2019). BAM files of CCS
reads were aligned to the plasmid reference using BWA/0.7.13
mem (Li 2013). Reads that were aligned to the reference sequence
were piped to a new BAM file with Samtools/1.9 (Li et al. 2009) and
analyzed with cigar strings to validate alignments. Barcodes were
then extracted and two barcode-variant maps were generated.
One file contains all the barcode-variant reads and the other con-
tains the highest quality read for each unique barcode. Errors
found in these files were corrected using a multiple sequence
alignment (MUSCLE 3.8.31) (Edgar 2004) of reads sharing the same
barcode. Final reads were derived from consensus sequences from
these alignments. Ambiguous sequences were fixed by aligning
sequences to the highest quality reads using the Needleman–
Wunsch algorithm (EMBOSS 6.4.0) (Rice et al. 2000).

Clinical comparisons
Clinical comparisons were made using retrospective data gathered
from clinical laboratory databases for testing performed as part of
standard clinical care between 2014 and 2019. This retrospective
analysis was done under University of Washington IRB 00007284.

Results
A new method for multiplex mutation rate
assessment
The chemostat is a continuous culture device that matches the
growth rate of an organism to the dilution rate, stabilizing popula-
tion size and environmental conditions throughout an experiment.
Many ways to study mutation rate take advantage of drugs for
which WT organisms are sensitive but an LOF mutation causes re-
sistance, which makes it straightforward to track mutant fre-
quency (Whelan et al. 1979; Boeke et al. 1987). However, to
determine rate, one must know the number of generations that
have elapsed since the mutational event, which is difficult in batch
culture. Luria–Delbrück fluctuation assays and mutation accumu-
lation lines use different tactics to convert mutational frequency
into a mutation rate. In continuous culture, since the population
size stays stable, an increase in resistance is not due to an increase
in a lineage, as long as certain underlying assumptions are met, as
described in the following section. In the assay we have developed,
outlined in Figure 1, we can track many lineages in a pooled man-
ner to determine all of their mutation rates at once. We do this by
keeping track of de novo mutational events on selective media con-
taining a drug, while controlling for any changes in overall popula-
tion size by monitoring growth on nonselective media.

Next-generation sequencing of the plasmid recovered from
both the nonselective and selective media allows us to track
the various lineages over time. This assay is amenable to both
barcoded and unbarcoded libraries. With unbarcoded libraries,

we use shotgun sequencing of the allele isolated from the plasmid,
using the mutation within the gene itself as a way to track the vari-
ant over the course of the experiment. In barcoded libraries, the
barcode and variant are first linked using long read sequencing, af-
ter which amplicon sequencing of just the barcode reveals the fre-
quency of each variant at each time point. Our method is
amenable to both types of analysis to make it more generalizable.
In both cases, the increase in resistance frequency over time for all
lineages can be calculated, giving us their mutation rates.

Our first application of this method utilizes S. cerevisiae and
focuses on variants of Msh2, a clinically relevant DNA repair
enzyme. However, this assay is amenable to the study of any mi-
crobial strain that can be cultured inside a chemostat and any
molecular pathway where neutral mutations yield a phenotype
that can be selected outside the chemostat.

Conditions required for mutation rate assessment
in the chemostat
To accurately measure mutation rate in the chemostat, certain
criteria must be satisfied. First, the readout of mutation rate
should be neutral in fitness. Second, resistance should accumu-
late linearly over the assay period indicating no spontaneous
nonneutral mutations arose and reached a detectable frequency.
Lastly, there should be no inherent fitness effect due to the
variants we seek to characterize. Failure to satisfy these criteria
invalidates the assay.

To address the first assumption, we used resistance to canava-
nine as a read out. LOF mutations in CAN1, which encodes an ar-
ginine transporter, prevent uptake of the toxic arginine analog
canavanine since the transporter is nonfunctional. In our assay,
we use the native CAN1 contained within the genome of our
transformed strain to select for mutational events. The use of
canavanine to select for LOF mutations within CAN1 has been
successfully used to assay mutation rate in yeast previously
(Paquin and Adams 1983; Lang and Murray 2008). It has a
minimal 1.015% fitness benefit under glucose limitation, the con-
ditions used in this study (Gresham et al. 2008).

To determine the timeframe over which we could observe lin-
ear accumulation of resistance, we assayed the mutation rate of
msh2D strains containing either WT MSH2 (MSH2) or pRS413
(msh2D) using the same conditions as future pooled experiments.
Previous work has shown complementation by plasmid-borne
WT MSH2 and that variants that abrogate activity elevate the
mutation rate in yeast (Strand et al. 1993; Drotschmann et al.
1999; Gammie et al. 2007). Chemostats were individually inocu-
lated with MSH2 and msh2D strains, and samples were plated
every 24 hours to determine which timepoints correspond to the
range for linear accumulation of CanR mutants (Supplementary
Figure S1). We found that between �12 and 50 generations,
resistance to canavanine accumulates at rates consistent
with previous literature (Table 1) (Gammie et al. 2007; Lang et al.
2013). The observed lag in linear accumulation can be explained
by the approach of the population to steady state, the point at
which population growth rate and chemostat dilution rate are
balanced [reviewed in (Gresham and Dunham 2014)]. After 50
generations, selection on adaptive mutations is likely the cause
of the nonlinear increase (Paquin and Adams 1983; Adams et al.
1985). From this, we determined that all future experimental
timepoints must be taken between �12 and 50 generations to
accurately determine the mutation rate. If we are to multiplex
this assay, null-like msh2 variants should not have a large
fitness effect, otherwise we cannot determine the difference
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between a de novo mutation and expansion or contraction of a
resistant lineage.

In a head-to-head competition between WT and msh2D, we
found a 1.097% fitness defect associated with the msh2D over
the short course of our experiment (Supplementary Figure S1).
This means we will likely slightly underestimate mutation rate of
high mutators. However, by correcting our mutant frequency by
the relative population frequency of each variant, we can miti-
gate the effects of both the strain manipulation and resistance to
canavanine.

Pools of alleles accumulate mutations at expected
rates
Mutation rate can vary even under very similar conditions, and
thus multiple replicate assays must be done to obtain accurate
measurements. We created a pooled assay to easily increase the

number of replicates for each individual mutation rate assess-
ment. We first established a proof of principle assay with 46 pre-
viously published alleles of MSH2 (Gammie et al. 2007) (Figure 2,
Supplementary Table S1). We transformed the msh2D strain with
a pool of the MSH2 alleles contained within plasmids, inoculated
aliquots of the pool into four independent 200 ml chemostats,
and from each collected six samples on selective and

Figure 1 A schematic outlining the multiplexed mutation rate method. A pool of alleles is inoculated into a chemostat. Samples are plated onto
nonselective media or media containing canavanine to select for LOF mutations in CAN1. Plasmid is isolated from the canavanine selected plates as
well as from the nonselective pool. The assay can handle both unbarcoded and barcoded plasmids using a shot gun or barcode sequencing,
respectively. In both cases, the frequency of the allele on selective canavanine media is divided by its presence in the total pool and tracked over time
to generate the mutation rate. With barcoded plasmids, barcoded WT can be used to determine the fold change of variants against an internal control.

Table 1 Mutation rates of control pure cultures and pools

Relevant genotype CanR ratea Fold induction CAN

MSH2 1.52� 10�7 6 0.07 1
msh2D 49.44� 10�7 6 2.6 29
Unbarcoded pool 21.62� 10�7 6 2.53 13
Barcoded pool 39.6� 10�7 6 2.1 26

a Rate, mutations per generation.
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nonselective media over 50 generations, as determined from the
control experiments described above. Plasmid was recovered
from all samples, plasmid-borne MSH2 alleles were amplified by
PCR and subjected to shotgun short read sequencing, and the fre-
quency of each allele from the canavanine-resistant pool was
normalized by the frequency in the nonselective pool and con-
verted into colony counts (see Materials and methods).

The average mutation rate of this pool is 13X over wild type
(Table 1), which approximates what is expected in a pool contain-
ing both LOF and WT-like alleles. In Figure 2, the mutation rates of
each allele as measured at CAN1 are plotted. We compared the
results to the phenotype found in previous work using qualitative
patch assays, Luria–Delbrück fluctuation tests, and yeast two-hy-
brid assays between Msh2 and its subunit partners Msh3 and Msh6
(Figure 2, Supplementary Table S1). With the exception of three
alleles (K873E, C67Y, and M707I), alleles previously described as
WT-like all grouped together, as did the LOF alleles. C67Y was clas-
sified as LOF due to a lack of subunit interaction and a qualitative
patch assay in previous work. This lack of subunit interaction may
not be reflected in our mutation rate assay and perhaps explains
the lack of correspondence to the qualitative measurement. K873E
and M707I both showed an LOF phenotype measured at CAN1 but
were found to be WT-like when testing for dinucleotide instability.
These alleles exist at the edge of the classification between LOF
and WT-like in the compared study and could potentially explain
why the results are discordant. These data show a grouping of the
high mutators and low mutators, indicating that our new method
can largely replicate the results of previous efforts to measure al-
lele-specific effects on mutation rate.

Simultaneous measurement of mutation rate
among 2000 different lineages
To determine the limit on the number of alleles that can be
assayed at once, additional alleles of Msh2 were curated from

the clinical database ClinVar (Landrum et al. 2014). These
human Msh2 variants were mapped onto the yeast MSH2 gene;
only sites with a residue conserved between both orthologs
were considered. Twenty-eight alleles with known pathogenic-
ity were included as well as 216 VUS. Alleles in the Walker A
ATPase domain and the linker region, which are more highly
conserved between humans and yeast, were given precedence
(Gammie et al. 2007). Alleles were barcoded a median of five
times (Supplementary Figure S7) and the barcode and variant
were associated with long-read Pacific Biosciences sequencing.
Of the 244 alleles synthesized, 185 variants covered by 1237
barcodes were able to be assayed. In addition, 737 barcodes
were associated with WT, giving a robust internal control
(Figure 3A). The 59 variants not assayed were due to low
barcode coverage of the variant in the pool, low read coverage
during sequencing, or because the barcode lineage showed evi-
dence of a fitness altering mutation (Supplementary Figures S2,
S3, and S6). The number of variants that can be assayed is de-
pendent on the composition of the pool, with higher mutators
being easier to assay than lower mutators, results from
this pool of Msh2 variants indicate that the assay is capable of
tracking �2000 barcodes at once.

Internal WT barcodes can identify differences in
mutation rate among alleles
The addition of barcodes, while requiring additional work and
cost, can provide internal controls to the pooled mutation rate
assay, as each genotype can be tracked in multiple independent
lineages. The cumulative mutation rate of the barcoded pool con-
taining novel variants of Msh2 was 3.96 X 10�6 CanR/generation,
a 26-fold increase over WT (Table 1). The WT barcodes in this as-
say showed a median mutation rate between 1.09� 10�6 and
3.59� 10�6—approximately 10-fold higher than the expected rate
(Figure 3A). Traditional fluctuation assays completed on a strain

Figure 2 Calculation of mutation rates of indicated alleles using multiplexed mutation rate assessment. Mutation rate (CanR per generation) of
previously studied alleles, colored by the phenotype found in Gammie et al. 2007. Mutation rates are plotted on a log2 axis and points represent
measurements from separate chemostats.
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containing the WT plasmid recapitulated individual chemostat
assays, indicating that it was not a strain or complementation is-
sue (Supplementary Figure S8). While the source of this global in-
crease in mutation rate is unknown, it can be controlled for by
the internal WT barcodes. All variant barcodes in the pool were
compared to the internal median WT mutation rate of that pool
to calculate fold change over WT for each variant. Inclusion of
barcoded WT allows for a robust internal control for mutation
rate assessment, which mitigates spurious sources of increased
mutation.

Allele-specific mutation rates recapitulate
ClinVar pathogenicity classifications
To determine whether the variants in the barcoded pool recapit-
ulated clinical variant interpretations reported from diagnostic
testing, we first looked at variants with known pathogenicity
scores in ClinVar. The control variants used have a review sta-
tus of two or higher, which is a classifier for strong evidence for
variant classification in ClinVar (Figure 3B). Variants that shared
the same ClinVar classification were found to have similar muta-
tion rates. All five benign variants s “23 out of 23 pathogenic” for
correctness.] and likely pathogenic alleles showed a significant in-
crease in mutation rate compared to WT. Due to the limited num-
ber of previously characterized variants in the pool, it is difficult to
determine true sensitivity and specificity scores; however, these
data lend confidence to our ability to bin variants into pathogenic
or benign categories. Based on the results of known variants, we
have created four bins: variants that do not differ significantly from
WT are potentially benign (1). Those with values ranging between
1.3� and 1.4� over WT are likely intermediate (2). Those which are
significantly higher than WT are potentially pathogenic (3). The
lowest fold change that showed a significant difference from WT
was 1.4�, so we classified those which are above this threshold but
do not reach significance as possibly pathogenic (4). Traditional
fluctuation assays on variants which had heightened mutation
rates but did not reach significance recapitulated the higher muta-
tion rate (Supplementary Table S4), lending credence to this possi-
bility pathogenic classification. We were heartened to see our assay
recapitulates previous clinical interpretations and that the use of
control alleles allowed for the generation of bins to provide infor-
mation on the VUS assayed.

Estimating pathogenicity of VUS
We were able to assay 157 SNP VUS in this assay. Of 157 variants,
50 showed a significant difference in mutation rate in compari-
son to WT and were classified as potentially pathogenic. The mu-
tation rates of these 50 variants are given in Table 2. A summary
of the fold changes of all variants is found in Supplementary
Table S1. We found that one variant, K449N, had a significantly
lower mutation rate than WT, though this result did not replicate
in an individual fluctuation assay on this variant (Supplementary
Table S4). The mechanism of this possible lowered mutation rate
and whether it is a biologically relevant is unknown and could
provide an interesting point of study if later confirmed. The 50
VUS that showed a significant increase in mutation rate ranged
from 1.39-fold over WT to 13-fold over WT. No alleles assayed
had a full LOF phenotype—which would be characterized by a 30-
fold increase in mutation rate. This may reflect the dynamic
range of the assay or it may reflect that no true LOF alleles
existed in the data set. In an attempt to address this, a validation
set of nine alleles was subjected to traditional fluctuation assays
(Supplementary Table S4). hMSH2 variant R680P recapitulated
the 13-fold increase found in the pooled assay—indicating that
the upper range of the values found in the assay are correct. For
future experiments, it may be wise to include barcoded deletion
strains at a low frequency to directly address the dynamic range
of the assay. Taken in total, this data set provides evidence of
pathogenicity for an additional 157 VUS of MSH2; 83 will be classi-
fied as potentially benign, 7 intermediate, 17 possibly pathogenic,
and 50 potentially pathogenic. While additional study would be
required before these classifications could inform clinical diagno-
sis, these data represent a first indication of the effects of these
mutations on function and could be used as a line of evidence
according to American College of Medical Genetics (ACMG) crite-
ria (Richards et al. 2015).

Associating variant data with clinical and tumor
sequencing phenotypes
To more accurately compare clinical data with the outputs of
this screen, the fold change calculations were converted to
scores. Table 3 contains information on variants that have clini-
cal findings associated with them. Clinical summaries were gath-
ered from data provided to the University of Washington

Figure 3 Control alleles of Msh2 in barcoded experiment pool. (A) Calculated mutation rates (CanR per generation) of WT barcodes in four replicate
experiments plotted on a Log2 axis. (B) Fold change over WT plotted on a Log2 axis, colored by pathogenicity classification in ClinVar. Points represent
individual barcoded measurements from the four replicate experiments. Significance determined by comparing variants to the WT barcodes by a
Wilcoxan rank-sum test with the Benjamini–Hochberg correction for multiple hypothesis testing. *P< 0.05;**P< 0.01;***P< 0.001; ****P< 0.0001.
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Genetics and Solid Tumors Laboratory. An assessment of
whether the clinical information is consistent or inconsistent
with functional scores was provided by a board-certified molecu-
lar pathologist with expertise in this area (B.H.S.). Clinical evi-
dence was considered consistent with functional data when both
suggested the variant was pathogenic or benign regardless of the
strength or significance of the data. There are several types of in-
formation on MSH2 that can be gathered from patients, families,

and tumors (Thompson et al. 2013; Ra~nola et al. 2018; Shirts et al.
2018; Li et al. 2020). Personal and family history of colorectal or
endometrial cancer provide weak evidence of pathogenicity while
personal and family history lacking HNPCC-associated cancers
provide weak evidence against pathogenicity (Li et al. 2020).
Tumor characteristics of microsatellite instability (MSI-H) and
loss of Msh2 and Msh6 on immunohistochemistry staining pro-
vide moderate evidence supporting pathogenicity (Thompson
et al. 2013; Li et al. 2020). Presence of alternative pathogenic var-
iants in MSH2 or other genes that explain these tumor or other
tumor characteristics provides evidence against pathogenicity,
while a second somatic pathogenic variant at heterozygous fre-
quency or loss of heterozygosity in tumor provides moderate and
strong evidence supporting pathogenicity, respectively (Shirts
et al. 2018). Formal strategies for combining each of these types of
data with functional data are outside the scope of this effort.
Rather we provide relevant clinical summaries with an overall as-
sessment of whether the clinical information is consistent or in-
consistent with functional scores. Of the 25 variants identified, 16
(64%) had clinical data that were consistent with functional data,
4 (16%) had clinical data that were inconsistent with functional
data, and 5 (20%) had clinical data that were equivocal or fell in
the indeterminate functional score range. Some discordance is
expected given that functional data are only one component of
the ACMG guidelines for clinical variant interpretation; this dis-
cordance is consistent with results of past studies seeking to use
other clinical criteria to classify variants (Thompson et al. 2013;
Shirts et al. 2018; Li et al. 2020).

Discussion
We developed a new method for high-throughput mutation rate
assessment that combines a mid-20th century method to deter-
mine mutation rate with 21st-century next-generation sequenc-
ing. This allows for the pooling and multiplexing of mutation rate
assessment that has not been accomplished before. We were
able to complete over 6000 individual mutation rate calculations
over �2000 lineages covering �200 variants of MSH2, a critical
component of MMR. Although we included a high frequency of
WT sequences, our analysis indicates many of these could
be substituted with additional VUS to increase throughput at
minimal cost to accuracy. The assay is limited by the canava-
nine-resistant subpopulation within a 200 ml chemostat, which is
dependent on the mutation rates of the lineages in a pool. One
could increase the number of variants to be assayed in a single
experiment by increasing the volume of the chemostat, though
the logistics of expanding the volume beyond the 2 L size of avail-
able commercial fermenters may be difficult. Another possible
modification would be to utilize alternative marker loci that
generate selectable mutations at higher rates than the WT CAN1
sequence. In addition, the inclusion of barcoded null mutants
may provide an additional control to better normalize the results
to established mutation rates.

In this work, we estimated the pathogenicity of 157 variants of
uncertain or conflicting significance derived from clinical testing.
These results provide a key piece of information to testing labs
seeking to assign pathogenicity to variants for which little other
evidence is available. We have found that our results largely
match clinical data obtained from tumors (Shirts et al. 2018).
These data in combination with a recent deep mutation scan on
Msh2 in a human cell line (Jia et al. 2020) will allow for accurate
reclassification of uncertain and conflicting variants in this gene.
Our data largely recapitulate the results from Jia et al.

Table 2 Mutation rates of significantly different alleles

Human
genotype

Yeast
genotype

Counta Fold
induction

CANb

IQRc Sigd

K449N K466N 10 0.56 0.28 ***
G761R G780R 31 1.39 0.96 ***
M672R M691R 32 1.61 3.37 ****
R711Q R730Q 25 1.62 2.63 ****
P349A P361A 61 1.79 2.03 *
V695L V714L 12 2.08 1.77 ****
Q681E Q700E 20 2.09 2.69 ****
R359K R371K 7 2.25 1.26 ****
M672V M691V 37 2.27 2.37 **
H783Y H802Y 11 2.38 1.82 ****
S676P S695P 8 2.48 4.55 *
A609P A627P 12 2.56 3.36 **
G761V G780V 19 2.71 2.82 ****
A700E A719E 9 2.78 3.79 ***
H783D H802D 7 2.79 4.53 *
G683E G702E 54 2.88 3.62 ****
A689V A708V 11 3.17 2.58 ****
P696S P715S 5 3.27 1.66 **
R524H R542H 9 3.49 5.85 **
R524C R542C 13 3.61 7.10 ****
K675E K694E 8 3.66 7.49 **
T724M T743M 34 3.83 3.51 *
P622Q P640Q 5 3.95 2.00 ***
P622A P640A 9 4.12 3.17 **
S676L S695L 5 4.18 1.43 ***
R524L R542L 12 4.18 2.22 ****
Y43D Y43D 7 4.31 2.16 **
E643K E662K 24 4.41 5.92 **
G669R G688R 13 4.90 2.62 ****
C693R C712R 13 5.00 10.95 **
T668P T687P 17 5.03 11.27 **
G692E G711E 14 5.04 8.82 ****
T724R T743R 18 5.76 6.85 **
G683W G702W 18 5.81 6.00 **
G827R G855R 34 5.99 8.72 **
Q690E Q709E 15 6.03 8.01 *
A689P A708P 9 6.27 5.14 ***
P670R P689R 6 6.31 6.23 ****
G692W G711W 23 6.33 6.60 *
G669D G688D 18 6.63 11.83 *
G827E G855E 11 6.95 7.11 ****
T677R T696R 13 7.41 4.94 ****
P349S P361S 47 7.48 8.01 ****
G338V G350V 14 7.98 15.14 ****
G669C G688C 12 8.08 5.35 **
R621Q R639Q 4 8.29 2.07 ***
N671D N690D 13 8.61 6.56 *
R621P R639P 13 9.28 10.78 ****
L310R L305R 14 9.50 13.27 ****
C693Y C712Y 4 9.70 3.71 ****
R680P R699P 9 13.00 17.19 ****

a Count, the number of times a variant was assayed in total.
b For stated genotype, mutation rate (mutations per cell division) was

calculated and then compared to the WT mutation rate. Barcode and
chemostat replicates are combined to calculate median fold change.

c Interquartile range of all barcode and chemostat replicates.
d Significance is calculated by a Wilcoxan rank-sum test with the

Benjamini–Hochberg correction for multiple hypothesis testing.
*< 0.05; **< 0.01; ***< 0.001; ****<0.0001.
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Table 3 Summary of variants with clinical or tumor data

Human
genotype

Scorea 95% CIb Sigc ClinVard Clinical informatione CSTf

P27L �1.06 0.87 ns VUS Heterozygous germ line. MSI-H colon cancer with loss of PMS2 by IHC, under
age 30 at diagnosis. Also has heterozygous VUS in MLH1.

Y

K449N �0.84 0.44 ** VUS Heterozygous germ line. Ovarian cancer. No family history of cancer. Y
A54S �0.11 0.34 ns VUS Heterozygous germ line. No personal history of cancer. Family history early

onset colorectal cancer and breast cancer.
Y

A733T 0.11 0.93 ns VUS Heterozygous germ line. Breast cancer. Family history of colon, ovarian, and
brain cancers.

Y

P616R 0.17 0.52 ns VUS Heterozygous germ line. MSI-H endometrial tumor with loss of MSH2 and
MSH6 by IHC. Two other clearly pathogenic LOF MSH2 mutations identified
in the tumor make this less likely to be pathogenic

Y

Q374R 0.20 0.42 ns B Heterozygous germ line. MSI-H endometrial tumor with loss of MLH1-MSH2,
MSH6, and PMS2 by IHC. The tumor had two other clearly pathogenic
somatic mutations in MSH2.

Y

V655I 0.21 0.38 ns VUS Heterozygous germ line. Colorectal cancer under age 30. No family history of
cancer.

N

W764R 0.27 0.68 ns VUS Heterozygous germ line. MSI-H colon tumor with loss of MSH2 and MSH6 by
IHC. Evidence of LOH for MSH2 variant in tumor.

N

L599S 0.33 0.39 ns VUS Heterozygous germ line. Seen in patient with breast cancer and family his-
tory of breast and colorectal cancer.

Y

V78I 0.36 0.70 ns VUS Heterozygous germ line. MSS ovarian tumor with other pathogenic variants
with no LOH for MSH2 variant in tumor.

Y

I770V 0.42 0.52 ns VUS Heterozygous germ line. Colorectal cancer diagnosed under age 30. Seen with
heterozygous germ line VUS in APC gene.

—

G761R 0.47 0.38 * VUS Suspected germ line variant in prostate tumor. IHC for MSH2, MSH6
equivocal. MSI equivocal. Apparent MSH2 LOH in tumor.

—

H785R 0.75 0.51 ns VUS Heterozygous germ line. Colorectal cancer diagnosed over age 70. —
P349A 0.84 0.30 *** VUS Homozygous germ line. MSS colorectal cancer. The tumor also had POLE

mutation and ultramutator phenotype.
—

Q681E 1.06 0.48 ** VUS Heterozygous germ line. MSI-H colorectal cancer diagnosed over age 50.
Tumor with loss of MLH1 and PMS2 explained by double somatic MLH1
mutation in tumor.

N

A609P 1.36 0.73 ** VUS Heterozygous germ line. MSI-H colon cancer with loss of MSH2 and MSH6 by
IHC. Under age 50 at diagnosis. Tumor had one somatic pathogenic MSH2
mutation seen at heterozygous frequency in the tumor.

Y

P696S 1.71 0.98 * VUS Heterozygous germ line. Personal history of phenochromocytoma, family
history of renal and brain cancer.

N

S676L 2.06 0.70 ** VUS Heterozygous germ line. MSI-H colon cancer diagnosed under age 50. Tumor
had loss of MSH6 by IHC. Seen with MSH2 p. G827R somatic mutation
listed below.

Y

C693R 2.32 0.80 **** LP Somatic mutation in tumor. MSI-H colon tumor with loss of MSH2 by IHC.
This was seen with another heterozygous pathogenic mutation in MSH2
(1760-1 G>A).

Y

G692V 2.42 0.58 **** LP Somatic mutation in tumor. MSI-H neuroendocrine tumor with loss of MSH2
and MSH6 by IHC. Seen in a tumor with a germ line likely pathogenic vari-
ant in MSH2 (p.L30R) that had loss of heterozygosity.

—

G827R 2.58 0.51 **** VUS Somatic mutation in tumor. MSI-H colon cancer diagnosed under age 50.
Tumor had loss of MSH6 by IHC. Seen with the germ line variant p. S676L
listed above.

Y

G692W 2.66 0.61 **** VUS Heterozygous germ line. MSI-H endometrial tumor with loss of MSH2 and
MSH6 by IHC. Cancer diagnosed over age 50. Variant reported by another
laboratory to segregate with HNPCC in one family. A variant at the same
position (p.G692R, NM_000179.2: c.2074 G to C) is classified as likely
pathogenic (class 4) by the InSiGHT consortium.

Y

G827E 2.80 0.63 **** VUS Heterozygous germ line. Pancreatic cancer diagnosed over age 80. Loss of
MSH2 and MSH6 by IHC.

Y

N671D 3.11 0.53 **** VUS Heterozygous germ line. Personal history of colon polyps and family history
of colon, uterine, and other cancers.

Y

L310R 3.25 0.74 **** P Heterozygous germ line. Seen in a family with multiple MSI-H colon cancers
that had loss of MSH2. Co-segregation likelihood ratio for pathogenicity
in the family was 44:1. See (Tsai et al., 2019) for complete pedigree
information.

Y

a For stated genotype, variant mutation rate (mutants per generation) was compared to the WT mutation rate. The score represents log2(median fold change).
b 95% confidence interval on log2(fold change).
c Significance is calculated by a Wilcoxan rank-sum test with the Benjamini–Hochberg correction for multiple hypothesis testing. *P<0.05; **P<0.01; ***P<0.001;

****P< 0.0001.
d Initial clinical classification as stated in ClinVar. B, benign; LP, likely pathogenic; P, pathogenic; VUS, variant of uncertain significance.
e Clinical information collected from UW Laboratory Medicine. MSI-H, microsatellite instability-high; IHC, immunohistochemistry.
f CST, consistent, tumor or clinical data is consistent with functional score. Y ¼ Yes, N ¼ No, — ¼ undetermined.
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(Supplementary Figure S9). This will provide physicians better
guidance on whom to screen for HNPCC and how often.

Our multiplexed assay works for any protein that affects mu-
tation rate. Thus, it can be used to assess mutation rate variation
arising from changes in other MMR proteins, as well as in pro-
teins that act in other DNA repair pathways. Assaying variants in
the sequence context of the native human cDNA could be possi-
ble for genes that complement the orthologous yeast gene knock-
out (Vogelsang et al. 2009; Kachroo et al. 2015); however, our
initial attempts to recapitulate the complementation of mlh1 and
pms1—the S. cerevisiae orthologue of PMS2—with human MLH1
and PMS2, other critical MMR genes associated with HNPCC, were
unsuccessful. This, however, does not mean that assaying muta-
tion rate of human alleles of DNA repair enzymes is not possible
and in fact would be a very interesting line of study. We further
note that our assay has additional limitations in replicating hu-
man biology: for example, it is not capable of assaying alleles
that perturb splicing, RNA stability, or gene regulation, given
that these processes are significantly different in yeast vs human
cells.

The current set of alleles could also be tested in different ge-
netic backgrounds, such as in the ubiquitin ligase san1D back-
ground (Arlow et al. 2013) which could give additional
information on the stability of Msh2 variants and could deter-
mine the mechanism behind an increased mutation rate for
some variants. It could also be done in the background contain-
ing deletions or change of function mutations in other proteins in
the MMR complex. Both variant library and background are
completely mutable in this system.

Our method should be widely applicable and can be used to
answer many other questions associated with mutation rate
outside of clinical variant interpretation. While this assay is
not appropriate for organisms or strains that are not culturable
within the chemostat, that still leaves a large set of questions
that can be answered. Accurate, multiplexed measurement of
mutation rate variation could be used to screen polymerases for
increased or decreased fidelity, to screen the yeast deletion col-
lection for knock-outs that increase mutation rate, or to un-
cover differences in mutation rate among natural variants of
yeast. In conclusion, this method is broadly applicable to many
different problems in which mutation rate is a factor and can
be used to estimate the pathogenicity of clinically relevant
DNA repair enzymes.

Data availability
All sequencing data are available at https://www.ncbi.nlm.nih.
gov/bioproject/PRJNA662579. Strains and plasmids are available
upon request. Supplementary material available at figshare:
https://doi.org/10.25386/genetics.14132609. Supplementary File
S1 contains figures and tables referenced in this text and
Supplementary File S2 contains the custom script used in this
work. Supplementary File S3 contains strains and plasmids
used in this text, tables from Supplementary File S1 in excel
format, as well as data sets required to run the custom script in
Supplementary File S2.

Supplementary material is available at https://doi.org/10.
25386/genetics.14132609.
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