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ABSTRACT

Centromeres are essential for proper chromosome
segregation. Despite extensive research, centromere
locations in yeast genomes remain difficult to in-
fer, and in most species they are still unknown. Re-
cently, the chromatin conformation capture assay, Hi-
C, has been re-purposed for diverse applications, in-
cluding de novo genome assembly, deconvolution of
metagenomic samples and inference of centromere
locations. We describe a method, Centurion, that
jointly infers the locations of all centromeres in a
single genome from Hi-C data by exploiting the cen-
tromeres’ tendency to cluster in three-dimensional
space. We first demonstrate the accuracy of Centu-
rion in identifying known centromere locations from
high coverage Hi-C data of budding yeast and a hu-
man malaria parasite. We then use Centurion to in-
fer centromere locations in 14 yeast species. Across
all microbes that we consider, Centurion predicts
89% of centromeres within 5 kb of their known lo-
cations. We also demonstrate the robustness of the
approach in datasets with low sequencing depth. Fi-
nally, we predict centromere coordinates for six yeast
species that currently lack centromere annotations.
These results show that Centurion can be used for
centromere identification for diverse species of yeast
and possibly other microorganisms.

INTRODUCTION

Centromeres are chromosomal regions whose function en-
ables faithful chromosome segregation via formation of the
kinetochore (1). These elements are also key regulators of
genome stability (2) and replication timing (3,4). In animal
and plant genomes, centromeres are large heterochromatic
zones, but many yeast species have point centromeres, which

are sequence elements as small as 125 bp (5). The relative
simplicity of yeast centromeres has allowed their functional
dissection, and the abundance of sequenced yeast species
has shed light on the evolution of centromeric elements
across hundreds of millions of years of evolution (6).

The Hemiascomycete yeasts comprise a highly important
taxon of model organisms in genetics and genomics (7,8),
and some are crucial in biotechnology applications such as
recombinant protein expression (9). Most yeast plasmid ex-
pression systems are dependent on locating and identifying
yeast centromeres because they confer the property of stable
segregation to episomal plasmids (10). However, efforts to
annotate yeast centromeres are hindered by the extraordi-
nary diversity among species (11). Mapping centromeres in
diverse species has been attempted, usually through phylo-
genetic tools (6,12) or chromatin immunoprecipitation (13).
However, both approaches have drawbacks, the former due
to the divergence of underlying functional motifs and the
latter due to non-specific signal. A method of mapping cen-
tromeres that does not rely on evolutionary predictions or
rare protein–DNA interactions would therefore be useful
for identifying centromeres in novel species. These new cen-
tromere sequences could then be used, for example, to build
new plasmid-based strain engineering tools in species im-
portant for research and biotechnology.

Chromosome conformation capture tools such as Hi-C
and related protocols use proximity ligation and massively
parallel sequencing to probe the three-dimensional (3D) ar-
chitecture of chromosomes within the genome (14–16). Hi-
C and related techniques create a contact map, consisting of
a matrix of genome-wide interaction counts between pairs
of loci. Contact maps have recently been shown to con-
tain long-range contiguity information: Hi-C has been used
in the scaffolding of de novo genome assemblies (17,18),
molecular haplotyping (19) and metagenomic deconvolu-
tion (20,21). These methods have also paved the way for a
more systematic analysis of genome architecture, including
long-range gene regulation and chromatin architecture (22–
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24). These advances raise the possibility that contact maps
might be used to determine the location of subchromoso-
mal genomic structures such as centromeres and nucleoli.

A recent study attempted to map centromere locations
using Hi-C contact probability maps (25). This approach
exploits the strong architectural features of yeast genomes
to determine centromere positions and rDNA clusters
in Saccharomyces cerevisiae, Naumovozyma castellii, Nu-
raishia capsulata and Debaryomyces hansenii. In yeasts, cen-
tromeres are tethered by microtubules to the spindle pole
body, leading to centromere clustering (24). Similar cluster-
ing is also present in other organisms, such as the parasite
Plasmodium falciparum and the plant Arabidopsis thaliana
(26,27). The clustering of elements creates a distinct peak
of interactions between chromosomes in the trans Hi-C ma-
trix, and an X-shape in the cis-elements of the interchromo-
somal contact counts Pearson correlation matrix. Marie-
Nelly et al. (25) exploit this X-shape structure in trans con-
tact counts correlation matrices to first detect a 40 kb win-
dow containing each centromere.

In a subsequent step, they carve out 40 kb-by-40 kb win-
dows of contact counts for each pair of centromeres and re-
fine the prediction by fitting a Gaussian on the sum of trans
elements of these windows, a procedure similar to those
used for single molecule localization or high-resolution mi-
croscopy (28). However, this method has several limitations.
First, the procedure relies on the correct pre-localization of
candidate centromeres. This step fails when other sequences
also colocalize (for instance, rDNA sequences). Second, the
last step of the procedure collapses the data of several trans
interaction windows into a 1D profile and calls the differ-
ent centromeres independently from each other, thus poten-
tially losing some valuable information.

Here we propose a novel method, Centurion, that jointly
calls all centromeres in a genome-wide Hi-C contact map.
The key idea is that a joint optimization can effectively ex-
ploit the clustering of centromeres in 3D. We first compare
our method to the one described by Marie-Nelly et al. on
four publicly available high-resolution Hi-C contact maps
(S. cerevisiae (29) and three stages of P. falciparum (26)).
This comparison demonstrates that Centurion infers cen-
tromere positions more accurately than the previously pub-
lished method. We then apply our method to Hi-C data
from 14 diverse yeast species (20), yielding high-resolution
centromere location predictions for each chromosome in
each species. For the eight species that already have cen-
tromere annotations available, our predictions match very
closely with the existing calls. For species with as-yet un-
characterized centromeres, our predictions will serve as the
basis for targeted experimental validation and could be used
to create new plasmid tools in these yeasts. Our results sug-
gest that Centurion has great potential to identify the cen-
tromere locations of many yeasts for which standard tech-
niques have failed to date. Furthermore, we demonstrate
that Centurion works well even with very limited sequenc-
ing depth Hi-C libraries generated from pooled samples,
making it a practical as well as powerful tool to use on
single microorganisms and metagenomic mixtures. Centu-
rion is freely available as open source software at http://cbio.
ensmp.fr/centurion.

MATERIALS AND METHODS

Single organism Hi-C data

We use Hi-C data gathered in two previous studies: an
asynchronous budding yeast (S. cerevisiae) sample (16)
and three different stages of the human malaria para-
site P. falciparum (26). For the budding yeast Hi-C data,
we download and use the files HindIII + MspI (intra
and inter) from http://noble.gs.washington.edu/proj/yeast-
architecture/sup.html. For the three stages of P. falciparum,
we download and use the Hi-C raw contact counts at
10 kb resolution from GEO archive (Accession codes:
GSM1215592, GSM1215593, GSM1215594).

Metagenomic Hi-C data

For Hi-C data from metagenomic samples we use the two
synthetic mixtures (M-Y, M-3D) generated in (20). We also
perform additional sequencing of the M-3D sample using
two restriction enzymes that cut more frequently than the
6-bp cutters HindIII and NcoI used in the original publica-
tion. We perform these additional Hi-C experiments exactly
as described in (20) with the exception that we use Sau3AI (a
4-bp cutter that recognizes ‘GATC’) and AflIII (a 6-bp cut-
ter that recognizes ‘ACRYGT’) to fragment the DNA. We
then combine the reads from these two libraries (Sau3AI
and AflIII) to produce Hi-C contact maps.

We process the Hi-C libraries from these metagenomic
samples in a similar fashion to the Hi-C data from the above
mentioned single organism samples, with the exception of
two differences. First, we map the reads to a meta-reference
genome that concatenates the reference genomes of all the
organisms in the corresponding sample. This mapping strat-
egy discards contacts which cannot be uniquely assigned to
a single organism, thereby reducing contamination between
contact maps. Second, because of the longer read lengths
for the metagenomic libraries compared to single organ-
isms (80–101 bp versus 20–50 bp), we post-process the non-
mapped reads that contain a cleavage site for the restriction
enzyme used for the library generation, as previously de-
scribed (30). This post-processing increases the number of
informative contacts extracted from the metagenomic Hi-
C libraries by 5–15% depending on the read length and the
cleavage site frequency. The resulting set of informative con-
tacts are processed further at appropriate resolution, as de-
scribed below.

Assembling the K. wickerhamii genome

Two input genome assemblies are used for creating the new
K. wickerhamii reference genome. The first is the publicly
available K. wickerhamii reference genome originally se-
quenced by Baker et al. (31), and the second is the K. wick-
erhamii associated cluster from Burton et al. (20). These as-
semblies are merged with CISA (32) and then merged us-
ing the mate-pair library from (20) using the ‘scaffold’ com-
mand from IDBA (33). Hi-C reads are then aligned to this
assembly, and the seven scaffolds containing the seven K.
wickerhamii centromeres are identified. Lastly, this assem-
bly is run through Lachesis (17), with a restriction that the
seven centromere-containing scaffolds could not be merged.
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Data normalization

Hi-C contact counts are subject to many biases (GC-
content, mappability, etc.) (34). To correct for technical bi-
ases, we apply to the raw contact counts an iterative correc-
tion and eigenvector decomposition method proposed by
Imakaev et al. (35), based on the assumption that all loci
should interact equally. We then rescale the resulting matrix
such that the average normalized contact count is equal to
the average raw contact counts.

Centromere calling

We segment the full genome into N windows of similar
length (N = 611 for S. cerevisiae at 20 kb) and summarize
the Hi-C data by the contact count matrix C ∈ R

N×N, where
Cij is the normalized number of physical interactions cap-
tured between loci in windows i and j. For each window
i ∈ [1, N] we denote by B(i) ∈ [1, L] the chromosome to
which window i belongs, L being the total number of chro-
mosomes (L = 16 for S. cerevisiae). We also denote by xi
the genomic coordinate of the center of the i-th window.
Our objective is to infer the genomic coordinates p = (p1,
. . . , pL) of the centromeres of the L chromosomes. More
precisely, centromeres usually consist of a sequence with a
length ranging from several hundred base pairs for point
centromeres to several thousand base pairs for regional cen-
tromeres. In this work, we infer the mean position of these
sequences.

Our main assumption is that, because centromeres colo-
calize in the nucleus, we expect loci near centromeres in dif-
ferent chromosomes to be enriched in Hi-C contacts. To
capture this enrichment, we model the contact counts be-
tween windows i and j of different chromosomes k and l
by a 2-D Gaussian function centered on the corresponding
centromeres pk and pl:

a exp
(

− (xi − pk)2 + (xj − pl )2)
2σ 2

)
+ b ,

with parameters a, b and � ≥ 0. Then, denoting by D the set
of pairs of windows (i, j) from different chromosomes with
non-zero counts, we jointly estimate the parameters (a, b, �)
and the positions of the L centromeres by a least-squares fit
of the Hi-C count data, namely, by minimizing in a, b, � ≥
0 and p = (p1, . . . , pL) the following objective function:

∑
(i, j )∈D

[
Ci j − a exp

(
− (xi − pB(i ))2 + (xj − pB( j ))2)

2σ 2

)
− b

]2

. (1)

Note that in this optimization, the position of each cen-
tromere is constrained to be on its corresponding chromo-
some. Note also that for each non-zero entry of the con-
tact count matrix, we only fit the Gaussian centered on the
corresponding pair of loci. Thus, when the centromeres are
close to a chromosome boundary, we only fit a truncated
Gaussian.

Initializing the optimization problem

Because the optimization problem (1) is non convex, the lo-
cal minimum found by the algorithm depends on the initial-
ization of the parameters, in particular of the centromeres’

positions. We therefore need a heuristic to initialize cen-
tromere positions. Because centromeres tend to interact in
trans with other centromeres, a simple heuristic is to choose
the position on each chromosome at the center of the win-
dow with the largest total number of trans contact counts.
However, we found that this heuristic was often not suffi-
cient, because other loci besides centromeres, such as telom-
eres or rDNA clusters, can exhibit large numbers of trans
interactions. We therefore implemented another heuristic
to generate other good initializations and to explore more
local minima. In short, on each chromosome we detect a
few local maxima (typically, two per chromosome) of a
smoothed trans contact counts curve. We then initialize the
optimization by combining each choice of centromere lo-
cation among the candidates on each chromosome. If time
constraints do not allow us to test all such initializations
(with two choices on 14 chromosomes, this corresponds to
214 = 16 384 different initializations), then we can further
reduce the exploration of local minima by starting from the
best candidate on each chromosome (i.e. with the largest
number of trans contact counts), optimizing the objective
function from this initialization, and then moving to other
’nearby’ local minima of the objective function by chang-
ing centromere initialization to another candidate one cen-
tromere at a time, until no nearby local minimum is better
than the one we have converged to.

A Python implementation of the proposed method is
available at http://cbio.ensmp.fr/centurion.

Measuring the performance

To measure the performance of the centromere position pre-
diction on datasets for which we have the ground truth, we
compute the distance in base pairs between the prediction
pred and the segment (b, e) as follows:

max ((b − pred)+, (pred − e)+)

where (u)+ is u if u ≥ 0 , 0 otherwise.

RESULTS

Validating the method on S. cerevisiae and P. falciparum

To evaluate the accuracy of our centromere prediction
method (Figure 1), we first applied it to two organisms
with known centromere coordinates and available Hi-C
data. The first one is the widely studied budding yeast S.
cerevisiae. The genome of S. cerevisiae has 16 chromo-
somes and thus 16 centromeres, all of which colocalize
near the spindle pole body (36). All 32 telomeres of S.
cerevisiae tether to the nuclear envelope. The repetitive
ribosomal DNA of S. cerevisiae occurs on chromosome
XII and is bundled into the nucleolus at the opposite
side of the nucleus from the spindle pole body (37).
These organizational principles constrain the chromo-
somes to fold into a distinct configuration, known as the
Rabl configuration, which resembles a water lily shape
(38). The contacts between centromeres in S. cerevisiae
chromosomes are known to result in a strong enrich-
ment of centromere-to-centromere Hi-C links (29). We
sought to evaluate Centurion’s ability to pinpoint the exact
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4. Selecting candidate centromeres. 

5. Jointly optimizing centromere coordinates over all  
chromosomes.  
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……………..… 

candidate set = {{1a, 2b, …, 16a},  {1b, 2b, 16a}, ...} 

..… 

f(cij - fit1)=5 f(cij - fit1)=1 �  f(cij - fitn)=3 

Figure 1. Outline of Centurion’s computational workflow. 1. Paired-end Hi-C reads are mapped and filtered to produce genome-wide contact maps (see
Materials and Methods). 2. Contact maps are normalized to correct for technical and experimental biases (35). 3. Peaks in marginalized trans contact
counts are identified as candidate centromere locations. 4. If necessary, a heuristic reduces the number of centromere candidates that will be used to
initialize the joint optimization. 5. A joint optimization procedure finds the best set of centromere coordinates, one per chromosome, minimizing the
squared distance between the 2D Gaussian fits and the observed trans contact counts. 6. For organisms with known centromere locations, the accuracy of
predicted centromere locations is evaluated; otherwise, the method provides de novo centromere calls.

centromere locations directly from a Hi-C contact map (39).

Using 40 kb-resolution Hi-C contact maps from Duan
et al. (29) (Figure 2A and B), Centurion predicts centromere
coordinates with an average deviation of 11 kb from the
known coordinates. Notably, Centurion’s Gaussian fitting
procedure allows the centromere calls to achieve finer reso-
lution than is provided by the input contact maps. Using 20
kb resolution contact maps, the average deviation drops to
9 kb. Furthermore, we observed that normalizing the con-
tact maps (35) yields substantially improved results, reduc-
ing the average deviation to 2.5 kb for both the 20 kb and 40
kb resolution. We investigated the differences in the predic-
tion accuracy of our method among the 16 different chro-
mosomes. While our predictions were within 1 kb of the
known centromere coordinates for the chromosomes V, VI,
IX, XIII and XV (59 bp, 235 bp, 111 bp, 289 bp and 163 bp
away, respectively), they were >5 kb away for chromosomes

III, VII and XII (5011 bp, 5327 bp and 6457 bp away, re-
spectively). While the cause of this fluctuation of accuracy
is not yet known, chromosomes III and XII house the only
major blocks of heterochromatin in this genome other than
telomeres (the silent mating loci and rDNA, respectively),
suggesting that linked heterochromatinized loci may inter-
fere with accurate centromere prediction.

We then applied our method to a second species, the
malaria parasite P. falciparum, which is responsible for the
most virulent form of malaria (40). We recently used Hi-C
to provide a global picture of the genome architecture of P.
falciparum at three stages (ring, schizont and trophozoite)
throughout its erythrocytic life cycle in human blood (26).
Centromere coordinates for P. falciparum were only identi-
fied systematically relatively recently (41). We applied Cen-
turion to the contact maps of each of these three stages at 10
kb, 20 kb and 40 kb resolutions (Supplementary Figure S3).
As with S. cerevisiae, we observe some variation in the ac-
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Figure 2. Calling centromeres on P. falciparum and S. cerevisiae. A. Heatmap of the normalized trans contact counts for S. cerevisiae Hi-C data at 40 kb
overlaid with Centurion’s centromeres calls (black lines). The contact counts were smoothed with a Gaussian filter (� = 40 kb) for visualization purposes.
White lines indicate chromosome boundaries. B. Per chromosome errors of Centurion’s centromere calls for S. cerevisiae using normalized (black) and raw
(blue) Hi-C contact maps at 40 kb resolution. C. Heatmap of trans contact counts for P. falciparum trophozoite data at 40 kb overlaid with Centurion’s
centromere calls (dashed black line) and ground truth (red line) for chr 2, 3, 4 and 12. D. Average errors of centromere calls for Centurion (black) and
Marie-Nelly et al. (25) method for S. cerevisiae data from Duan et al. (29) and the three stages of P. falciparum when both methods are initialized with the
ground truth centromere coordinates.

curacies of our predictions for each chromosome. However,
overall, the accuracy is very high. At 10 kb resolution, for
example, Centurion’s centromere predictions fall within the
known centromere location for all 14 chromosomes during
the schizont stage, 13 out of 14 for the ring stage and for 11
out of 14 chromosomes in the trophozoite stage. Overall,
across the three different stages Centurion correctly local-
izes 90%, 64% and 45% of centromeres at 10 kb, 20 kb and
40 kb resolution, respectively. For the incorrectly called cen-
tromeres, the average distance from Centurion’s prediction
and the edge of the centromere is 495 bp, 1308 bp and 2319
bp, respectively.

We next sought to understand the sources of error in our
predictions. Looking closely at the contact count matrices
in the neighborhood of centromeres for which the predic-
tion is not accurate, we observed that loci in proximity to
centromeres seem to exhibit unusually sparse interaction
counts. For example, Figure 2C shows that in the tropho-
zoite stage, the centromere of chr 1 is close to a chromosome
boundary and the chr 4 centromere is close to a locus with
few interacting bins. The latter case leads to bias from the
normalization procedure because the few non-zero entries
in this sparse region are over-corrected. We also investigated
whether the accuracy of our prediction varies by life cy-
cle stage and matrix resolution (Supplementary Figure S1).
Many chromosomes are given consistently poor centromere
calls across all life cycle stages and at all resolutions, corrob-
orating the observations above that the predictions tend to
be influenced by biases intrinsic to the genome around those
centromeres, such as mappability or GC content.

We next compared the accuracy of our predictions to that
of a previously published method (25). The Marie-Nelly
et al. method often works well for identifying centromeres
using Hi-C libraries with very high sequencing depth; how-
ever, when Hi-C sequencing depth is limited or when loci
other than centromeres strongly cluster, the first step of the
procedure, called ‘pre-localization’, sometimes fails to iden-
tify the correct fixed size window in which the centromeres
reside. We hypothesized that the joint centromere calling by
Centurion, which leverages data from all chromosomes at
once, might alleviate this instability. To test this hypothe-
sis, we applied the Marie-Nelly et al. method to the same
four datasets (one S. cerevisiae and three P. falciparum) de-
scribed above. As shown in Supplementary Figure S4, in
each of these four datasets Centurion identifies centromeres
with better accuracy than the Marie-Nelly et al. method.
For instance, the colocalization of rDNA clusters and viru-
lence genes in P. falciparum drastically changes the pattern
of the correlation matrix used by Marie-Nelly et al. to pre-
localize their centromere calls, thus confounding their pre-
diction (Supplementary Figure S5).

We also asked whether the improvement of Centurion
over the Marie-Nelly et al. method is due to the initializa-
tion step, or due to different objective functions used by
each method. We initialized both optimization problems
with the ground truth and computed the resulting error. Our
results (Figure 2D) showed that Centurion’s error is still be-
tween 4- and 10-fold lower, thus demonstrating the benefit
of jointly calling centromeres.
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Figure 3. Impact of Hi-C library sequencing depth on the stability of the
centromere calls. Average variance of the results of Centurion on 500 gen-
erated datasets obtained by downsampling the raw contact counts to the
desired coverage.

Resolution, sequencing depth and prediction accuracy

To assess the stability of our predictions, we simulated 500
bootstrapped datasets of S. cerevisiae and of each stage of
P. falciparum with an expected total number of reads equal
to the contact count matrices. These bootstrapped samples
were obtained by drawing a contact count for each pair
of loci i and j from a Poisson distribution of intensity cij.
We then ran the optimization process on the bootstrapped
datasets, starting with initial values randomly placed within
40 kb of the centromere calls from our optimization in Sup-
plementary Tables S1–S4. Our results show that the opti-
mization is very stable (average variance of 25 bp for ring, 6
bp for schizont and 12 bp for trophozoite), suggesting that
the stochastic sampling of the sequencing procedure does
not significantly affect centromere predictions.

We then sought to investigate the extent to which the ma-
trix resolution and sequencing depth affect the accuracy of
Centurion’s predictions. As already seen in Supplementary
Figures S2 and S3, different species give different results:
for S. cerevisiae, increasing the matrix resolution to 10 kb
results in lowered accuracy of centromere calls, while in P.
falciparum the call quality improves slightly. We speculated
that our ability to call centromeres in a given species at a
given resolution may depend on the choice of restriction en-
zyme, the sequencing depth and the resolution of the con-
tact map.

We next evaluated the effect of depth of sequence cover-
age on the quality of our centromere predictions. We gener-
ated 500 low-coverage datasets by randomly downsampling
the raw contact counts. We then ran the optimization pro-
cess on these downsampled datasets, initializing with per-
turbed calls as before. We observe that the low-coverage
centromere calls remain highly stable and accurate. As illus-
trated in Figure 3, results across all datasets only begin to
degrade when downsampling to <10% of the total number
of reads, which corresponds to <1 count per bin on average.
Centurion is thus applicable to call centromeres at low cost
or for low-abundance species in metagenomic samples.

Centromere calls on a metagenomic dataset

We next sought to call centromeres in several species simul-
taneously by combining Centurion with metagenomic Hi-
C libraries. We previously (20) generated two Hi-C datasets
from synthetic mixtures: one containing 16 yeast strains (in-

cluding four strains of S. cerevisiae), and one containing
a mixture of 8 yeasts and 10 prokaryotic species. The two
samples contain a total of 19 yeast species, some of which
are much better characterized than others: centromere po-
sitions are already known for eight species (K. lactis, L.
kluyveri, L. thermotolerans, S. cerevisiae, S. kudriavzevii, S.
mikatae, S. pombe, S. rouxii) and partially for one more (S.
bayanus) (12,42–44).

We aligned the reads from the metagenomic Hi-C
datasets to these yeast species’ reference genomes (see Ma-
terials and Methods). The quality of the individual species
datasets differ greatly because the organisms vary in abun-
dance in the metagenomic samples, and because many se-
quences are shared nearly identically between organisms,
making the number of uniquely mappable reads for each
organism range between 109 k for one of the S. cerevisiae
strains and 26 M for the bacteria V. fischeri. Consequently,
the sparsity of the matrices is variable (Supplementary Ta-
bles S5 and S6). Furthermore, some contact count matri-
ces include at least one interaction count for >99% of all
possible locus pairs, whereas other matrices are below 5%.
Similarly, in the 40 kb matrices, the average number of inter-
chromosomal contact counts per bin varies from <0.004 to
>200. In particular, the matrices for the four S. cerevisiae
strains are very sparse: the reference genomes of the four
strains are very similar to one another; thus, we are not able
to map reads uniquely. We therefore discarded those strains
from our analysis, as well as organisms with incomplete ref-
erence genomes. We applied Centurion to the remaining 14
yeasts (E. gossypii, K. lactis, K. wickerhamii, L. kluyveri, L.
waltii, S. bayanus, S. kudriavzevii, S. mikatae, S. paradoxus,
S. stipitis, P. pastoris, L. thermotolerans, S. pombe, S. rouxii)
on both 20 kb and 40 kb contact maps.

Across these 14 species Centurion performs well, both on
high-coverage datasets (K. lactis, L. kluyveri, S. bayanus)
and low-coverage datasets (S. mikatae), at 20 kb and 40 kb,
finding centromeres at an average deviation from the ground
truth of 10 kbp (Figure 4B and Supplementary Figure S6).
Given this success with yeasts with known centromere po-
sitions, we next made de novo centromere calls for the other
six yeast species present in the metagenomic samples. These
regions, visualized in Supplementary Figures S15–S20, are
strong candidates for experimental validation by other ap-
proaches. One feature that is shared by centromeres across
all studied fungi is that they reside in regions of early repli-
cation timing (3,4). Thus if our centromere calls lie in re-
gions of advanced replication timing in a species for which
replication timing has been profiled but centromeres have
not yet been identified, this data could be used to assess the
validity of our predictions. Accordingly, we overlaid the po-
sitions of our centromere calls in P. pastoris, where repli-
cation has been recently profiled (45). In all four chromo-
somes, P. pastoris centromere predictions lay in regions of
early replication timing (Supplementary Figure S21), lend-
ing support to our predictions.

The effect of the choice of restriction enzyme

In addition to the resolution of our contact matrices, the
underlying resolution of the Hi-C data itself may limit the
accuracy of our predictions. Hi-C reads can only occur near
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Figure 4. Centromere calling on a metagenomic sample. A. Heatmap of the
trans contact counts for K. wickerhamii overlaid with de novo centromere
calls (black lines). The contact counts were smoothed with a Gaussian filter
(� = 40 kb) for visualization purposes. White lines indicate chromosome
boundaries. B. Box plots indicating the error (in kb) for each chromosome
in Centurion’s centromere calls for eight yeasts with known centromere
coordinates from the combined metagenomic Hi-C samples M-3D and M-
Y of (20) on the 20 kb contact count matrices.

the recognition site of the restriction enzyme used in the Hi-
C assay; indeed, the best resolution we can hope to achieve
is a matrix in which each corresponds to one restriction en-
zyme fragment. Some restriction enzymes cut much more
frequently than others. Thus, we speculated that a Hi-C
experiment using enzymes that cut more frequently might
yield more accurate results than an experiment using less
frequently cutting enzymes.

To address this question, we compare the accuracy of
centromere calling from two Hi-C libraries created from a
single metagenomic sample using different combinations of
restriction enzymes. The first library was created using the
two 6 bp-cutters, HindIII and NcoI. The second library uses
Sau3AI, which has a 4 bp recognition site, and AflIII, which
has a 6 bp recognition site with two degenerate sites, mak-
ing it effectively a 5 bp cutter. Digestion with HindIII/NcoI
yields a total of 8324 restriction fragments, whereas diges-
tion with Sau3AI/AflIII yields 42359 restriction fragments.
We corrected for the difference in Hi-C sequencing depth
between Sau3AI/AflIII and the NcoI/HindIII libraries by
generating downsampled datasets with an equal number of
reads from each sequencing library. We then normalized
the datasets and applied Centurion. The sample includes

three species for which we possess the ground truth cen-
tromere locations, only one of which (L. thermotolerans)
had enough reads in both the Ncol/HindIII (63 000 reads)
and the pooled Sau3AI/AflIII (55 000 reads) datasets to
correctly call the centromeres. The error on the downsam-
pled Sau3AI/AflIII datasets (8 kbp) was on average half
as large as the error on the the Ncol/HindIII datasets (16
kbp). Thus, we conclude that using a restriction enzyme
with more frequent cutting sites enables more precise cen-
tromere calls at fine scales.

DISCUSSION

While centromeres are a fundamental element in the biology
of genomes, their identification in diverse species has proven
difficult due to sequence divergence and limitations of avail-
able tools. In this work, we have developed a novel method,
Centurion, that uses centromere colocalization and the pat-
tern it creates in Hi-C contact maps to jointly call cen-
tromeres for all chromosomes of an organism. We first es-
tablished the feasibility of this approach by demonstrating
that Centurion accurately calls regional centromeres on the
parasite P. falciparum and the yeast S. cerevisiae as well
as point centromeres on several other yeasts with known
centromere coordinates. For the species with high depth
Hi-C sequencing, Centurion often identified centromeres
within 1 kb of the actual coordinates (41 times out of 58
for three stages of P. falciparum and S. cerevisiae data).
We then used Centurion to infer centromeres of multiple
yeast species (eight with known, six with unknown cen-
tromere coordinates) from two metagenomic Hi-C samples.
Our results showed that Centurion still accurately identifies
centromere coordinates from samples with only limited se-
quencing depth. Thus, Centurion can be used to accurately
and efficiently identify centromere locations in yeast species.

The task of centromere identification from Hi-C data has
been attempted recently by others (25). Centurion offers
a few key differences compared to the previous approach.
The first difference is in the pre-localization of candidate
centromeres. Marie-Nelly et al.’s method uses only the cis
Pearson correlation information independently per chro-
mosome to identify the initial candidates. However, the pat-
tern created by centromeres in the Pearson correlation ma-
trix can be very similar to the patterns generated by other
genomic elements such as rDNA coding regions or by spe-
cific gene clusters (e.g. virulence genes in P. falciparum).
Because Marie-Nelly et al.’s method restricts the further
search for the best centromere coordinate to only the can-
didates from the pre-localization step, an inaccurate can-
didate (e.g. an rDNA region instead of a centromere) will
prevent the method from finding the correct centromere lo-
cation. Centurion, on the other hand, utilizes trans con-
tact information jointly across all chromosomes for its pre-
localization step. Furthermore, Centurion allows multiple
candidates per chromosome during the second step of the
optimization, thereby leaving room for correcting potential
errors in the pre-localization step. The second difference
between the two methods is in how they use the subma-
trices that correspond to trans contact maps flanking the
pairs of candidate centromeres from the pre-localization
step. For an organism with N chromosomes, Marie-Nelly
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et al.’s method carves out the N-1 trans submatrices for each
chromosome, sums these N-1 matrices and then collapses
the sum into a 1D vector of row/column sums. Then, inde-
pendently for each chromosome, the method fits a Gaussian
to this 1D vector, and the resulting peak corresponds to the
predicted centromere location. In this procedure, both the
summation of N-1 matrices and the collapsing of the result-
ing matrix into a 1D vector of sums result in loss of impor-
tant information embedded in 2D maps. Furthermore, per-
forming the Gaussian fit separately for each chromosome
does not fully take into account the joint colocalization of
the other N-1 centromeres. To address these issues, Cen-
turion infers a 2D Gaussian fit that best explains the ob-
served trans contact counts, jointly optimizing these 2D fits
for all pairs of centromeres. Both of these improvements in
the pre-localization and the optimization steps allow Centu-
rion to perform better specifically for the cases with limited
sequencing depth.

Our approach could be improved in several respects.
First, better modeling of zero contact counts may improve
inference for organisms with many repeated sequences in
the pericentromeric regions, or datasets with low sequenc-
ing depth. Second, one could model contact counts as a
Gaussian distribution centered on the pairs of centromere
locations. Maximizing the log likelihood of such a model
might yield improved performance. Last, as described here,
our method requires reference genomes for the metage-
nomic samples. It would be possible to first build reference
genomes directly from the Hi-C data, using methods like
Lachesis (17) or GRAAL (46), and then infer centromere
locations using the inferred references. However, the inher-
ent structure of Hi-C contact counts for organisms with
colocalizing centromeres will likely present a challenge for
these methods because pericentromeric sequences on differ-
ent chromosomes are likely to appear to be adjacent to one
another.

Finally, our new centromere predictions have practical
applications. Autonomously replicating plasmids and arti-
ficial chromosomes are useful tools for research and strain
engineering (9). Identification of centromeres in new species
will facilitate building such constructs over an expanded
species range. P. pastoris, for example, is a common indus-
trial chassis (47), but existing plasmid tools in the species
have elevated loss rates (48) that could be stabilized by ad-
dition of a centromere. Many of our centromere calls were
accurate to <1 kb, making experimental validation pos-
sible. Sequencing data is available from the Short Read
Archive at http://www.ncbi.nlm.nih.gov/Traces/sra/?study=
SRP057812.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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