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High-throughput approaches to functional 
characterization of genetic variation in yeast 
Chiann-Ling C Yeh, Pengyao Jiang and Maitreya J Dunham*   

Expansion of sequencing efforts to include thousands of 
genomes is providing a fundamental resource for determining 
the genetic diversity that exists in a population. Now, high- 
throughput approaches are necessary to begin to understand 
the role these genotypic changes play in affecting phenotypic 
variation. Saccharomyces cerevisiae maintains its position as 
an excellent model system to determine the function of 
unknown variants with its exceptional genetic diversity, 
phenotypic diversity, and reliable genetic manipulation tools. 
Here, we review strategies and techniques developed in yeast 
that scale classic approaches of assessing variant function. 
These approaches improve our ability to better map 
quantitative trait loci at a higher resolution, even for rare 
variants, and are already providing greater insight into the role 
that different types of mutations play in phenotypic variation 
and evolution not just in yeast but across taxa. 

Address 
Department of Genome Sciences, University of Washington, Seattle, 
WA, USA   

Corresponding author: Maitreya J Dunham (maitreya@uw.edu) 
* Twitter account: @DunhamLab  

Current Opinion in Genetics & Development 2022, 76:101979 

This review comes from a themed issue on Evolutionary Genetics 

Edited by Christian Landry and Gianni Liti 

For complete overview of the section, please refer to the article 
collection, “Evolutionary Genetics” 

Available online 5th September 2022 

https://doi.org/10.1016/j.gde.2022.101979 

0959-437X/© 2022 Elsevier Ltd. All rights reserved.  

Introduction 
Genetic diversity present across the budding yeast 
Saccharomyces cerevisiae population has produced the ex-
traordinary phenotypic diversity that we see in this 
species today [1,2]. With a variety of wild ecological 
origins and over 12 000 years of domestication across the 
globe, S. cerevisiae isolates in different clades have dis-
tinct polymorphisms that facilitate adaptation to specific 
environments [3–5]. The overarching question that still 
remains after decades of genetics and genomics work is 
which of the genotypic differences and changes in 

genetic architecture between individuals give rise to 
phenotypic variation. A change in a single locus alone 
can be the cause for phenotypic differences and is 
known as a Mendelian trait. However, Mendelian traits 
are rare as most traits are complex and thus governed by 
multiple loci and gene-by-environment interactions. 
Understanding the genetic basis of complex traits has 
many implications for advancing therapeutics for dis-
ease, industrial applications, agricultural output for our 
changing climate, and our knowledge of evolution. 

Curation, deep sequencing, and genomic analysis of 
1011 S. cerevisiae isolates collected from natural and do-
mestic environments revealed the sheer number of var-
iants present in the population [3]. Containing over 1.6 
million single-nucleotide polymorphisms (SNPs), this 
collection highlights that foundational approaches such 
as quantitative trait locus (QTL) mapping for under-
standing the effects of these SNPs would be prohibi-
tively labor-intensive, time-consuming, and oftentimes 
impossible, given the current limitations of these stra-
tegies [6]. Copy number variants (CNVs) further con-
found our understanding of the genetic architecture of 
traits; almost all open-reading frames in the S. cerevisiae 
genome have a CNV in at least one of the 1011 strains  
[3]. The huge diversity in populations compared with 
the little that is known about the effects of genotypic 
changes, with the added layer of intricacy that environ-
mental factors play, necessitates high-throughput ex-
periments that can confidently determine the impacts of 
variants of all types. 

Even the huge number of variants as yet observed is 
dwarfed by the number of variants that could possibly 
exist. Obviously, this general problem is not limited to 
the yeast system: modern genetics is going to require 
high-throughput approaches to understanding variation 
across taxa. Technological solutions developed in yeast 
can immediately be applied to other genomes either as a 
testbed for methods development to port to other sys-
tems, or by heterologously expressing genes in yeast. 

While these challenges are daunting, the throughput of 
systems-level approaches for determining and measuring 
variant function has increased considerably, particularly 
in S. cerevisiae, pointing to a path forward. The expansive 
genetic diversity of yeast, coupled with the extensive 
toolkit for dissecting genetic traits and engineering 
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variants, provides an excellent foundation for under-
standing the impact of polymorphisms, learning funda-
mental principles underlying these effects, and 
ultimately predicting the effects of potential mutations. 
Here, we describe the latest technologies and strategies 
developed for addressing genotypic changes on a mas-
sive scale and what questions applications of these ap-
proaches can answer. 

Approaches 
Genome-wide association study (GWAS) and QTL 
mapping are the major approaches used to understand 
the effects of natural variants on complex traits [3,6,7]. 
Even though over one million samples have been in-
corporated in human GWAS analyses, the missing her-
itability problem, where mapped variants explain a small 
proportion of the total heritability [8], is still not re-
solved. Previously, in S. cerevisiae, due to the high degree 
of mosaicism and presence of population structure, 
GWAS required additional statistical corrections to avoid 
false positives [9–13]. However, increases in sample size 
and diversity have improved the power of using GWAS 
for understanding the genetic basis of complex traits in 
yeast [3,7,11–14]. 

QTL mapping, on the other hand, controls environ-
mental factors and leverages the segregation of parental 
genotypes to pinpoint causal genetic variants, leading to 
measurable phenotypes of interest [22] (Figure 1, left 
panel). Phenotyping approaches for QTL mapping in 
yeast vary widely and include those that detect changes 
in molecular phenotypes such as gene expression or 
protein abundance [23•–29], colony or cell morphology  
[20,30,31], flocculation patterns [20], growth rate  
[3,15••,16,20], enzymatic function [32], compound pro-
duction [33], translation-termination efficiency [34], and 
many more [1,2]. 

High-throughput genome-wide identification 
of genes contributing to trait differences 
Pooled approaches — such as bulk segregant analysis, 
which sequences pooled individuals with extreme phe-
notypes [21], and barcoding multiple parental strains  
[18••] or individual segregants [19•] in order to trace 
lineages of pooled segregants throughout a screening — 
improve the throughput of QTL mapping (Figure 1, 
right panel). Although these approaches can be enriched 
for false positives due to beneficial mutations, genomic 
instability, and diploidization events that may arise 
during the growth phase [20], advancements in auto-
mated workflows now allow phenotyping of a remark-
able number of individual segregants. The largest QTL 

mapping study in yeast to date phenotyped an as-
tounding 100 000 F2-barcoded segregants [18••]. Col-
lectively, QTL mapping studies have measured over 100 
complex traits [15••–18••,20,21]. Furthermore, delib-
erate selection of parent strains can survey most of the 
natural variation in the S. cerevisiae population, with 82% 
of biallelic SNPs captured by just 16 parental natural 
isolates [15••]. Progeny of these 16 isolates, as well as 
hybrids from a diallele cross with 55 natural isolates, are 
also enriched for rare variants [15••,35••]. Screening of 
these crosses confirmed that variants of large effects are 
usually rare in the total population, consistent with ne-
gative selection on these alleles [15••,18••,35••]. 

Ascertainment biases in QTL mapping still exist, re-
sulting in variants of large effects being overrepresented 
in functional studies and variants of small effects being 
overshadowed. Identification of polymorphic differences 
between two strains and individually introducing the 
variants from one strain to another exposes the func-
tional effects of those variants in an unbiased manner. 
Several advances made in CRISPR/Cas9 precise editing 
techniques have been used to introduce SNPs identified 
between two strains in a high-throughput manner 
(Figure 2b) [36–39]. Such studies leverage the use of 
retrons, base editing, and protein fusions to increase the 
efficiency of homology-directed repair over non-
homologous end joining in yeast [36–38]. These pooled 
variant studies have been able to interrogate the impacts 
of over 16 000 SNPs (in some cases over 30 000 SNPs) in 
one experiment, although variants of small effect tend to 
have low reproducibility and high false-discovery rates  
[36,37,39]. Once generated, libraries can be screened in 
various conditions to measure the interaction between 
each variant and the environment. Overcoming other 
limitations such as decreased editing accuracy with in-
creased distance to protospacer-adjacent motifs (or the 
cut-site motif recognized by Cas9) sites or high oligo-
nucleotide error rates will improve the power and accu-
racy of these assays. 

Precise editing approaches have been useful for identi-
fying expression QTLs (eQTLs), or cis-regulatory var-
iants that alter expression and affect phenotype, making 
it possible to pinpoint causal cis- and trans-acting muta-
tions in S. cerevisiae [23•,27•,40]. Similarly, genome-wide 
perturbations that upregulate or downregulate nearly all 
genes in one assay can identify eQTLs as well, although 
not always at nucleotide resolution [41•–44]. Scaled 
eQTL studies can now simultaneously measure ex-
pression and protein abundance with greater statistical 
power, providing a better understanding of how 
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promoters and post-transcriptional processes may affect 
complex traits [23•,27•,40]. In addition to changes in 
expression and protein-abundance patterns, complete 
loss of function (LOF) by full gene deletions, frameshift 
mutations, temperature-sensitive mutations, or in-
troduction of premature stop codons can be investigated 
in a high-throughput manner to determine the impact of 
different types of LOF mutations [38,45]. 

High-throughput interrogation of variant 
effects at a causal locus 
When genes of interest are identified by any of these 
mapping methods, the question arises of how natural 
genetic variation or potential new mutations in these 
genes impact function. Multiplexed assays of variant 
effects, or MAVEs, can interrogate the effects of 

substitutions and cis-regulatory mutations in one locus 
by creating large libraries of variants and measuring en 
masse how they affect fitness, protein interactions, ex-
pression, splicing, or enzymatic function [49]. MAVEs 
encompass a variety of methods such as Massively Par-
allel Reporter Assays, Deep Mutational Scanning, and 
Saturation Genome Editing. Variants for MAVEs can be 
generated through a variety of methods (Figure 2a): 
Error-prone polymerase chain reaction (PCR) is a cost- 
effective approach that introduces random mutations 
into a region of interest and can explore both single and 
combinatorial effects of mutations, but due to its random 
nature, specific mutations and variants of interest are not 
guaranteed to be generated [50,51]. Inverse PCR allows 
for site-directed mutagenesis and has now been scaled 
for MAVEs, but it remains quite labor-intensive  

Figure 1  

Genomic position

LO
D

sc
or

e Detecting QTL

x

Individual genotyping and
phenotyping of spores

Sporulate

F1

F2

F6

(a)

(b)

(c)

(d)

Multi-parental
strains

More rounds of
random mating

Barcoding and
pooling

Pooling (e.g.
Bulk Segregant

Analysis)

QTL mapping

Pool
sequencing

Detecting differential enrichments

Phenotype

Traditional QTL mapping procedures (left panel) and recent advancements (right panel). The LOD (logarithm of odds) score indicates the probability 
that a QTL is present at that genomic position. QTL are identified by regions with LOD scores above a significant threshold. Recent advancements 
increase mapping precision by (a) using multiple parental strains [15••], (b) more rounds of random mating [16,17], (c) high-throughput barcoding 
techniques [18••,19•], or (d) pooling assays [20,21]. In (d), the yellow and purple boxes represent yeast with extreme phenotypes, which are pooled 
and sequenced separately to detect alleles that are differentially enriched.   
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[46,52,53]. Oligonucleotide synthesis also allows for 
deep interrogation into single substitutions and can in-
clude more complex variants, or variants with more than 
one mutation, but has a higher cost and error rate  
[47,54,55]. Saturation mutagenesis can now be per-
formed endogenously with CRISPR/Cas9 editing, 
namely by designing synonymous mutations in the 
donor DNA strand or introducing a heterologous inter-
mediate sequence to prevent unintentional recognition 
and cleavage due to strand complementarity to the guide 
RNA [37,56] (Figure 2b). Similarly, improvements in the 
use of single-stranded oligodeoxynucleotides in yeast 
permit the scaling of precise, multisite editing without 
double-stranded breaks [57]. Sequencing full variants or 
short DNA tags that act as barcodes for each variant al-
lows the tracking of these variants throughout an assay, 
which can be used to infer variant function (Figure 3). 

MAVEs in yeast have been useful for predicting how new 
mutations alter phenotype, not just for yeast genes, but for 
genes from other systems as well (Figure 3). Remarkably, 
many human genes complement their orthologous S. cer-
evisiae gene knockouts, sequence homology can be taken 

advantage of for those that do not, and even genes without 
homologs can be functional when heterologously ex-
pressed in yeast [46,47,58–64•]. 

This style of high-throughput, pooled phenotype testing 
can also be applied to more complex allele libraries  
[48,65,67,68]. For example, we have generated and phe-
notyped a library of all natural alleles of one gene, in-
cluding multiple SNPs and insertion/deletions in one 
haplotype [48]. This MAVE approach for understanding 
gene function on a species-wide scale reveals not only the 
natural fitness distribution of variants in this gene, but 
informs its evolutionary history as well. Decreases in cost 
along with increases in throughput and accuracy of long- 
read sequencing enable the genotyping of large libraries 
containing complex variants that are longer than what can 
be fully captured from high-throughput sequencing [68]. 

Finally, variant libraries need not be based on natural 
sequences at all. Generation of randomized sequences 
has been useful for understanding how translation and 
transcription factor-binding sites are utilized in promoter 
regions, with the effects of up to 100 million sequences 

Figure 2  

Summary of yeast library construction and genomic editing methods. (a) Plasmid-based variant library construction. The effects of these variants can 
be determined by transforming yeast cells with this plasmid library. Commonly used library construction methods include (1) array-synthesized 
variants [37,46,47,54,55], (2) pooled PCR of natural variants [48], (3) site-directed mutagenesis [46,52,53], and (4) error-prone PCR [50,51]. (b) 
CRISPR-based variant construction. Yeast cells are transformed with a plasmid library of guide or donor-guide pairs, so that genetic changes are 
incorporated into the genome. These methods include (1) Genome-wide SNP/indel editing [36–39], (2) Genome-wide deletions [41•], (3) CRISPRi to 
decrease target expression [41•–43], and (4) CRISPRa to increase target expression [41•].   
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Figure 3  

Summary of high-throughput functional assays in yeast. The starting library can be developed using plasmid, integrative, or CRISPR-based methods 
from Figure 2. These functional assays include but are not limited to (a) Fitness assay [48], (b) RNA or protein-expression assay [23•,27•–29], (c) 
Enzymatic assay [46], (d) Variants display assay [64•], and (e) Protein-interaction assay [65–67]. Note that for simplicity, we only represent one variant 
library in the protein-interaction assay panel (e). In reality, two sets of protein variant libraries can be used to explore protein–protein 
interactions [65,67]. 
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determined in one experiment [69–71]. The increasing 
number of studies focusing on exploring this space en-
hances our understanding of variant effects and is fun-
damental to computational programs more accurately 
predicting function [29,72–76]. 

Conclusions 
Advancements in approaches for identifying QTLs as 
well as the underlying causal genes and nucleotides have 
revealed an extraordinary amount of information about 
complex traits. High-throughput methods such as those 
described here facilitate moving beyond individual ex-
ample cases and allow for general patterns to surface that 
begin to reveal the categories of complex traits and what 
is required for a comprehensive understanding of their 
genetic basis. Complex traits vary in patterns themselves 
and can involve multiple common variants, multiple rare 
variants, or a combination of both [15••,18••], justifying 
the need for independent interrogations of variants 
under multiple environments. For some traits, variants 
clustered in one locus can have effects in the same di-
rection [36,77]; for others, however, variants can have 
canceling effects that result in neither variant being 
detected in a QTL [23•]. These variants can be coding 
or noncoding, and the effect sizes of these mutations are 
relatively similar [16,36]. Effects of variants can be ad-
ditive, although greater sample sizes of segregants re-
vealed that the resulting phenotypes are more indicative 
of epistatic interactions [15••,18••,19•,35••]. Identi-
fying epistatic interactions is still challenging, and most 
high-throughput approaches for doing so have been 
through whole-gene deletions or engineered mutant al-
leles [67,78–81] or by investigating genetic network 
changes as a result of single-gene perturbations [29,82]. 
Thus, the effects of most pairwise and complex SNP 
interactions at the genomic scale remain to be de-
termined. Impacts of higher-order interactions are still 
rather elusive, although a recent study shows that this 
can be investigated using a hierarchical gene-drive 
system [83]. 

The end goal of these studies is to understand the prin-
ciples behind how genotypic changes alter phenotype. 
Saturation-level analysis can be achieved by taking a gene- 
centric approach to understand how variation in a locus 
affects phenotype. Good candidates for such analysis are 
the causal genes identified by QTL studies. Certain genes 
(such as MKT1, HAP1, and IRA2) continually resurface in 
QTL maps, indicating a high degree of pleiotropy  
[16,18••,20,84–89]. Yet, how regulatory and substitution 
changes alter their function under these various environ-
ments and across many more alleles and genetic back-
grounds is still largely unknown. Measuring the effects of 
genes using standing variation can reveal patterns of 
evolution and signatures of selection [48]. Insertion/dele-
tion mutations are commonly seen in natural variants as 

well; although indel effects are poorly understood, they 
can now be investigated using MAVE approaches [90,91]. 
Moreover, coupling growth phenotypes with molecular 
phenotypes such as gene expression or protein abundance 
can lead to mechanistic understanding. They also illus-
trate a high-throughput way for studying distribution of 
fitness effects of genes, which is an important and long- 
standing question in understanding evolution. 

Even with the high-throughput approaches developed to 
date, many challenges and prospects in identifying 
causal variants persist. In order to measure variant ef-
fects on complex traits, the traits must have phenotypes 
that can be measured accurately in high throughput. 
Additionally, knowing only one of the multiple traits 
affected by a pleiotropic gene may confound inter-
pretations of how variation affects fitness. The impact of 
intergenic regions remains comparatively understudied 
as well. Increases in whole-genome sequencing have also 
revealed that causal CNVs explain a larger fraction of 
phenotypic variance when compared with SNPs [3]. 
Thus, future studies will need to move beyond nucleo-
tide-level variants; increasing the throughput for 
studying the effects of mutations such as copy number 
variation, translocation, and aneuploidies will provide a 
more exhaustive view of how genotype affects pheno-
type. Finally, the success of heterologously expressing 
human genes in yeast to understand variant function is 
evidence that this versatile model organism can test 
gene function across other organisms as well. Applica-
tions of these high-throughput methods across taxa will 
inform the evolutionary history of selection, adaptation, 
and drift in spanning diverse populations. 
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