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ABSTRACT

High-throughput sequencing technologies haveledadxpansion of the scope of genetic
screens to identify mutations that underlie quattie phenotypes, such as fithess improvements
that occur during the course of experimental evotutThis new capability has allowed us to
describe the relationship between fithess and gpeadit a level never possible before, and ask
deeper questions, such as how genome structunigl@deanutation spectrum, and other factors
drive evolution. Here we combined functional germsand experimental evolution to first map
on a genome scale the distribution of potentiakfieral mutations available as a first step to an
evolving population and then compare these to th&ations actually observed in order to define
the constraints acting upon evolution. We firststauincted a single-step fitness landscape for the
yeast genome by using barcoded gene deletion ardxquession collections, competitive
growth in continuous culture, and barcode sequen@y quantifying the relative fitness effects
of thousands of single-gene amplifications or dehst simultaneously we revealed the presence
of hundreds of accessible evolutionary paths. Terdgne the actual mutation spectrum used in
evolution, we built a catalog of >1000 mutationkested during experimental evolution. By
combining both datasets, we were able to ask halwdry evolution is constrained. We
identified adaptive mutations in laboratory evolyexpulations, derived mutational signatures in
a variety of conditions and ploidy states, and mheiteed that half of the mutations accumulated
positively affect cellular fitness. We also uncaehundreds of potential beneficial mutations
never observed in the mutational spectrum deriverth the experimental evolution catalog and
found that those adaptive mutations become acdessithe absence of the dominant adaptive

solution. This comprehensive functional screen@rqul the set of potential adaptive mutations



1 on one genetic background, and allows us for tisé time at this scale to compare the

2 mutational path with the actual, spontaneouslyvéerspectrum of mutations
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AUTHOR SUMMARY

Whole genome sequencing of thousands of cancenggeshbas been conducted to
characterize variants including point mutations amdctural changes, providing a large
catalogue of critical polymorphisms associated withorigenesis. Despite the high prevalence
of mutations in cancer and technological advaneélsair genotyping, cancer genetics still
presents many open questions regarding the predicfiselection and the functional impact of
mutations on cellular fitness. Long term experitakavolution using model organisms has
allowed the selection for strains bearing recuresd rare mutations, mimicking the genetic
aberrations acquired by tumor celiere, we evaluate the functional impact of thousanfd
single gene losses and amplifications on the @elfithess of yeast. Our results show that
hundreds of beneficial mutations are possible duaidaptation but not all of them have been
selected in evolution experiments so far performfediether, our results provide evidence that
50% of the mutations found in experimentally evdlg®pulations are advantageous, and that
alternative mutations with improved fithess coudddelected in the absence of the main adaptive

mutations with higher fitness.

BLURB

A combined view of potential adaptive mutationsy@ated by a systematic screening approach,
coupled with the mutational spectrum derived frotpeximentally evolved yeast reveals the

usage of accessible evolutionary solutions.
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INTRODUCTION

Whole genome sequencing of thousands of human tuhas uncovered a huge number
of variants including point mutations and structwtanges, providing a large catalog of mutated
genes across all major cancer types [1-4]. Reabrairees in profiling initiatives and systematic
genomic analysis of tumors have identified novetated genes and rearrangements, raising the
prospect of discovering new important drivers ohtwigenesis [2]. However, another recent
study discovered that within the list of putativelgnificant genes, the number of false-positives
is also increasing [5]. Given the vast number ofatians identified in most tumors, determining
the functional impact of each mutation is a dauptask. The most frequently used approach in
cancer genetics to identify the few driver mutasi@mong the many mutations that don’t affect
fitness (often called passenger mutations) reliethe hypothesis that genes and pathways
important for the development of the disease arerrently mutated in independent tumors.
Those candidate driver genes can then be testestismgntally. Based on such predictions,
genes responsible for cell proliferation, drivef®oncogenesis, cell survival, cell cycle, invasion
and drug resistance have been identified using RBiAd pools of short hairpins in nematodes
and mammalian cell cultures [6,7 ,8]. While infatime, these approaches have not yet been
able to assess in an unbiased way the full contobwf mutations to the genetic basis of cancer
initiation.

Within the microbial experimental evolution resémcommunity, there is a similar need
to identify loci contributing to adaptation (alsodwn as adaptive mutations) in the growing list
of mutations identified in laboratory-evolved pogtibns. Several recent Evolve and Resequence
studies [9], where populations or clones have lseguenced after adaptation to a specific

condition, have dramatically increased the listoftations associated with adaptation in
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different conditions [10-18]. Within this rapidlpcreasing dataset, only a few mutations have
been fully characterized with regard to functiomir to studies investigating human disease
candidate genes, large-scale studies from the maroommunity have distinguished adaptive
mutations from background neutral mutations onbidigs of statistical approaches such as

frequency, enrichment and recurrence [10,11,173]9-2

Despite sophisticated genetic systems, dissedtmduinctional consequences of every
mutation observed in a population is still tedidhwugh generally experimentally
straightforwardFor example, simple genetics can be used to r¢amstations, followed by
fitness characterization of segregants carryingviddal mutations. This strategy has been
performed on a few evolved clones and has demdedtthat evolved clones isolated after
several hundred generations of propagation inenitlimited chemostats carry 1 to 2 adaptive
mutations [24] [Sunshine et al, submitted, See fupentary file]. Saccharomyces cerevisiae is
particularly well suited for determining the retatship between genetic variation and fitness at
genome scale. Ideally, the functional effects @rg\ypossible mutation should be tested. Since
recreating and annotating all possible mutatiomotsyet feasible, the field has instead created
systematic dosage series to mimic the most commaations such as loss- or gain-of-function
(LOF and GOF) and deletion or duplication of gef28s29]. While mimicking LOF, GOF,
deletion and duplications, those collections ddetske into account mutations that would not be
mimicked by copy number changes, such as speciitein coding mutations that generate new
activities or more subtle loss of function effetttan full knockout alleles. Despite the large
number of studies that have used these barcodetttohs to detect haploinsufficiency, dosage
sensitive genes, synthetic lethality, drug-sensithutations, and a huge number of other

phenotypes [27,30-38], only a few studies haveddakt beneficial mutations (mutations that
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increase fitness). For example, one study quadt#di@agonistic pleiotropy in a variety of
laboratory conditions and determined that while 3#%eletion strains are less fit than a wild-
type reference, only 5.1% of the strains were nfib{89]. Another study identified a large
number of heterozygous deletion mutations as bieémgficial, but also demonstrated that

haploproficiency was context-dependent [26].

Most of these studies have used phenotype datavayg t investigate gene function.
However, we can also approach these data from@ntenary genetics perspective: the ability
to identify beneficial mutationan masse allows us to survey the set of beneficial mutatiopsn
which adaptive evolution acts. Knowing this langseallows us to address a number of open
guestions: what is the distribution of fitness eféeof mutations, and how does this distribution
compare for loss of functiovs. gain of function mutations? Which of the possitmeficial
mutations are actually utilized by evolution? Anege usage patterns driven strictly by the
hierarchy of mutation fitness, or do other factaifect which mutations are observed? How
much does the distribution of adaptive mutatiorfifedamong different genotypes or selective
conditions? For example, how do haploids and digldiffer in the available pool of beneficial
mutations, and how might such differences affeetgaths by which adaptation can proceed?

Finally, to what degree can evolution be perturtmefdllow new paths?

The goal of our research was to address theseiguesising a paired functional
genomics and experimental evolution system. Wedneated a near-comprehensive single-step
mutations list by measuring the fitness of almdistiagle S. cerevisiae gene deletions and
amplifications. We accomplished this using poolethpetition of thousands of mutants in
nutrient limited chemostats combined with barcoglgugncing. We found that while most single
gene copy number changes are neutral or negategt fithess, ~600 mutations increased

8



fitness and correspond to potential evolutionatytsans. We next compared the single-step
mutation fitness to the actual mutation spectrunivéd from experimental evolution studies
performed in this study and also collected fromliteeature. We found that 50% of the
mutations are predicted to positively affect fithes sulfate-limited condition, mutations in one
gene dominate both the single-step fitness landsaag the observed mutational spectrum,
while in the two other conditions the increaseiinefss is driven by a large number of beneficial
mutations of smaller effect size. Finally, we shinat these constraints can be modified by
eliminating the highest fitness paths, upon whiehévolving cultures explore alternative

beneficial mutations.
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RESULTS

A comprehensive survey of first-step mutations

Pooled competition experiments followed by an llinabased barcode sequencing
method have been used to accurately determindgttiess effects of hundreds of pooled mutants
[25]. We performed a dose-response curve for ~8D&d the genes of the yeast genome in three
different nutrient-limitations using five differegeast barcoded genomic collectiomalfle SJ)
outlined as follows: two deletion collections iniatn each gene is replaced by a selectable
marker and a unique DNA barcode in one haploidaredheterozygous diploid background
[34], one control collection where thousands ofjuei barcodes have been placed at a single
known neutral genomic location [35], and finallyawollections of diploid strains bearing
plasmids where each gene and its native promotebé&an cloned into a barcoded plasmid
present at either low or high copy [32,33]. A schémdescription of the method is presented in
Figure 1. While the individual elements of the methodolagped here are well established in the
literature, this work is the first attempt to compapontaneously derived mutations from
experimental evolution with the potential set chpiive mutations discovered using a systematic

genetic screen.

Using the five pools described above, we conduattdal of thirty screens in three
previously explored chemostat culture conditior®§phate-limitation, glucose-limitation and
sulfate-limitation). The proportion of each straras measured during a pooled competition
assay, in which all strains from one collection everixed together at the same abundance and
grown for ~20 generation&igure S1). To overcome stochastic effects due to driftused

cultures of large population size (Q1tlls), as this strategy has been a successfutavay
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maintain diversity [26]. The pooled competitionsrevperformed during a very short period of
time (20 generations) to limit the effectad novo mutations occurring during population
growth. While other studies have been able to giydithess effects of mutations from as few
as two time-points, we sampled the mixed populatieery three generations to maximize the
accuracy of the fitness quantification. The frequeof each strain at each time point was

measured using barcode sequencing (barséghre S2 [25].

The functional screening of mutations uncovers hurneds of accessible

adaptive mutations

We quantified a total of 100,853 relative fitnessssging from -36.5 to +42.8% based on
an average of 462 reads per gene per competiteraated an experimental fithess landscape
of single gene copy number change from four diffegeast collections in three conditions
(Figure 2 - Table S3. Mutants of 2,133 genes were measured in alvevexperiments (three
conditions and four collections), with an additibA®53 genes sampled by at least one
experiment. To determine the inherent noise inexyerimental system, which could originate
from strain construction, pool generation, compatiand/or sequencing, we first quantified the
relative fithess of ~2,000 isogenic barcoded wyldet strains pooled and competed in the same
way as for the other four strain collections. Apeoted, the fitness distributions of these mutants
were tightly centered on Figure 2 - Table S3. We then used the maximum and minimum
fitness difference detected in the control poat@sservative cutoffs (+10%) to determine which
strains from the four other collections had a grbtmess benefit or deficit when compared to
the wild type strains. This cutoff also correspond=®ly with analysis from Otto based on

similar evolution experiments performed by Paquid Adams [40] demonstrating that a

11
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beneficial mutation with a 10% fitness increasd miach 5% of the population in ~200
generations and will fix in ~500 generations [4This analysis suggests that mutations causing
less than 10% fitness increase will rarely be olexein our experimental evolution timescale.
The functional screening of pooled mutants revetilatimost of the mutants display wild-type
fitness. Using the 10% cut-off, we detected anafmnient of mutants with a decreased fithess
(n=1693vs. 19 for the control pool) and an increased fit(esH06vs. 80 for the control pool)

respectively compared to the control pool (Chi sgya<0.0001) Figure 2).

We focused first on the 506 mutants showing in@edisness, hypothesizing that
mutations affecting these genes would be moreyliteebe adaptive during growth under strong
selection. Despite making up just 47% of the matetitested, 73% of the beneficial mutations
we detected are from the plasmid collections whiggegene copy number is increased,
suggesting that in diploids, gain-of-function migas and duplications are more likely to
produce fitness gains than are loss-of functionatiuts. Among the genes associated with a
fitness increasegUL1 was notable with the highest fithess measure {42r8sulfate-limited
condition for a strain carrying a high copy numpkrsmid). We previously demonstrated that
the amplification of this gene is recurrently sébelcduring experimental evolution in sulfate
limitation, and that increasing the copy numbe8dt 1 via expression on both low and high
copy number plasmids results in a fithess improverf#2,43]. Our screen detected a putative
secondary adaptive mutation in the vicinitySufL1 on chromosome IBSD2, a gene involved
in the downregulation of the metal transporter @ireg, Smfl and Smf2 [44,45]. The
amplification ofBSD2 increases the fitness of the cells by 5% and 12vf#n amplified in
sulfate- and glucose-limitation conditions respesdti. In our previous studies of tisJL1

amplicon, we detected only three independent clarese theSUL1 amplicon excluded the

12
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geneBD2. The fitness of each of the 13 strains harbormgraplification containing both

VL1 andBSD2 is higher than the fitness of three strains withamplicon containing onl$UL1
but notBSD2 [43]. ReintroducindBSD2 into one of the three strains using a low copypiial
increased the fitness by 5% (37.7% to 43.8%), destnating that the functional screen with
pooled strains is a reliable method to detect safédct and secondary adaptive mutations, and

suggesting that the two mutations have an addéfext on the fitness.

Our functional screens revealed the presence adrieds of possible beneficial mutations
(223 in sulfate-, 210 in glucose- and 73 in phospitiienited conditions). We next sought to
apply the functional knowledge gained from the greawide analyses described above to the
hundreds otle novo mutations identified in laboratory evolution expeents. Using this

combined dataset, our goal was to ask which pdati@adaptive mutations are selected and why.

Mutational spectrum in microbial evolution experiments

To determine the mutational signature of adaptai&ging laboratory evolution, we
sequenced and detected 150 mutations in 16 pogusadind 34 clones of both haploid and
diploid yeast evolved for over 100 generations (t2328) under conditions identical to those in
which our functional screens were performed (sifaser, six phosphate- and four glucose-
limited chemostats) [42] (Sedaterials and Methods). To explore this question further, we
also collected a large set of mutations from vaiBuolve and Resequence studies performed
under a variety of conditions in yeast [10-12,16483 Not all the conditions overlap with our
functional screens, but they are useful for crassdition comparison. In total, we compiled
1,167 mutations in 1,088 genes from 106 long-texinotatory evolution experiments conducted

in eleven different conditions from nine publishstddies in addition to this on&gble S4. The

13
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features of these studies and the resulting muisiaoe summarized ifable 1 The complete
list of mutations, their frequencies, and theirdicted effects are given ifable S4 The
compiled mutation catalog does not take into actoiiromosomal rearrangements, as these

events were not always measured in the differemties.

LOF mutations are enriched in haploids and are de@ted and recessive in

diploids

Comparing the mutational spectrum across many emvients, strains and ploidies
allows us to extract mutational signatures andritife properties of beneficial mutations in
yeast. Ploidy in particular has been a subjeata¢h interest since the observation that haploids
and diploids adapt at different rates [40]. Twoergcstudies have shown that loss-of function
mutations were commonly selected in evolved popriatof haploid yeast [10,11]. Based on a
small number of mutations tested in diploids, aao8tudy concluded that mutations affecting
cis-regulating regions are co-dominant in heteromggdiploids [47]. Though these results are
suggestive, because no other Evolve and Reseqsgries have been performed in a diploid
background, too few data have previously been abklto draw firm conclusions about how the

mutational landscape differs by ploidy.

We divided these mutations into four groups base8MPeff, an annotation program
that predicts the functional impact of the mutatidra gene, as follows [48]: (1) high impact
mutations such as frameshifts and the gain ordbasstart or stop codon; (2) moderate impact
such as non-synonymous site changes and the detetiosertion of a codon; (3) low impact
synonymous mutations; and (4) modifiers, correspantb mutations 5’ of a gene, in intergenic

regions and in introns. We found that the mutasigmature is different between haploid and

14
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diploid strains (Fisher exact tep10*°, corrected for multiple testing). In haploids thain
category of beneficial mutations is LOF by gairaaftop codon (Chi squangs0.003,Table 2)
consistent with a previous finding that LOF mutai@ominate in experimental evolution of
haploid yeast [11]. In contrast, LOF are depletediploid strains, which instead show an
enrichment for intergenic and 5’ upstream mutatisgigesting that amplification and GOF
mutations may be more important in this backgro{@tu squarep<10*, Table 2). This result

is consistent with our previous observations tiwatweed diploid strains contain more and larger
gene and chromosome copy number variants thanexvblaploids. We next investigated if the
difference between haploid and diploid was a gémala across environments. Using only
mutations discovered in haploid and diploid strawslved under matched conditions, we
detected that the mutational signature was diftdoetween haploids and diploids in glucose-
limitation (Fisher exact tegp<10™% with an enrichment of LOF in haploid (Chi-squane,224,
p<109), but only a slight tendency is observed in phaspfimitation (Fisher exact test, n=54
p=0.053) and none in sulfate-limited conditions Kieisexact test, n=10®=0.72). The
difference between ploidies is likely explainedthg tendency of LOF mutations to be recessive
[49] compared to mutations that increase gene sgme, which may be more likely to have an
effect as a heterozygote. Though loss-of-heteraayggbas been observed in diploid populations
[42,49], these are relatively rare. To test thieclly, we determined how many LOF mutations
detected as beneficial in a haploid context migkelthis effect when heterozygous in a diploid.
We compared 58 beneficial mutants from the hapleiétion collection to the fitness of the
heterozygous diploid mutants and found that thes&ations do show a tendency to be recessive,
with the average loss of fithess between haplo@idiploid of 8.6%. Only nine genes showed

no statistical change in fitness, indicating thatibset of LOF mutations can in fact be dominant

15
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(WSC3, TIM12, IPT1, MM22, UFOL1, NDL1, PBS2, YGR051C andYLR280C). We also found

that the distribution of mutations is not uniforiorgg the coding sequence. Disruptive mutations
(high impact mutations) are enriched near the staton (Wilcoxon rank-sum tegs10°

Figure S3A), indicating a preference for early truncationbjck are most likely to cause severe

LOF.
Mutational pathways are constrained

Recurrence-based models, which assume oncogenescareently mutated in several
tumor samples, are still one of the most widelydusgproaches to identify putative driver genes
in cancer [50-52]. The repeatability of adaptiagectories has also been extensively observed in
the microbial research community and has led talibeovery of drivers of adaptation such as
SUL1, HXT6/7, andRIM15 in S. cerevisiae andrpoSin Escherichia coli [11,19,20,42,53]. Of the
1,088 genes mutated in the catalog we compiled gébés were found with a mutation in more
than one sample, and among them 19 genes were foutaded more than five times
independentlyKigure 3A). We detected that recurrently mutated genes ardyhéginiched in
mutations categorized as high impact (Fisher ebestip<10°) (Figure 3B) and are longer than
genes with only one hit (Wilcoxon rank-sum tegst10'°) (Figure S3B) In order to detect true
adaptive mutations and discard false-positivessrsgstudies have developed tools to correct for
gene length [5]; in our study we decided insteadttempt to infer the functional impact of

mutations on cellular fitness using our screenltgsu
Prediction of evolutionary response to strong selé&on

Despite the presence of more than one hundredregtunutations, a large number of

genes are mutated in only single populations. &ihe number of Evolve and Resequence
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experiments is currently still relatively small,ialto a non-saturating genetic screen, adaptive
mutations are likely to be found in the class abttons and would be missed by a recurrence
method. As an alternative strategy toward spelfiadentifying adaptive mutations, we
compared the mutations found in the evolution expents with known beneficial mutations

identified by our genomic screen.

From the functional screen described above, wectsts06 beneficial mutations
targeting 458 genes; among them, 86 genes were foith a hit in our compiled mutation
catalog, 27 in their corresponding conditions dredrest in the other conditions (YPD and
nitrogen-limited). We also detected 21 recurrentlytated genes present in the list of beneficial
mutations Table S5. From the mutational catalog, 41 of 70 recurraatations were not
associated with beneficial fithess in matched doo in our functional screen. A third of them
are not present in the mutant collections; anathed were selected during experimental
evolution performed in more than one condition emght not represent true convergent
adaptation; and eight of them have a fitness ranfyom 3 to 9%, below our stringent threshold
for significance PDE2, LCB3, SXK1, DAL81, RAS?2, MTH1, IRA1 andRGT1). The remaining
five genes were recurrently mutated, but had noeansvbenefit in their given conditions
(VPS25, MNN4, FRE5 andGSH1 in glucose an®®’HOB84 in phosphate). One exampMNN4 has
been found mutated in two independent populatioawig in glucose limitation; however we
measured no fitness benefit in our functional sti@®d no fitness benefit was reported in a
competitive assay using evolved clones [24]. Thiegegenes could be recurrently mutated by
chance, or fitness increases caused by these angatie not mimicked by gene amplification or
deletion collections, which may be the case fotigloss of function mutations or gain of

function mutations that create a new activity. efditatively, these mutations may only have a

17



10

11

12

13

14

15

16

17

18

19

20

21

22

benefit in a specific genetic background. This ddtaw that convergent evolution cannot be
used as the only parameter to predict evolutionatgomes and more comprehensive and
unbiased detection of adaptive mutations requiresi@ direct method such as functional

screening.

50% of the mutations accumulated during experimentbevolution are

adaptive

Next we wanted to determine how many adaptive natstwere carried by each
sequenced population and clone, using the frequeh@currence combined with data from the
functional screen. We determined that 91% of timepdas (clones and populations) carried at
least one predicted driver mutation. Of these sam@ach contained an average of 5.2
confirmed known beneficial mutations: 7.6 per patioh and 2 per clone, with an average of
0.47 adaptive mutations per total mutatibig(ire 4A — Table S§. No difference was detected
between conditiondHgure 4B —Table S6).Three populations with no predicted beneficial
mutations were cultivated in nitrogen-limiting caimshs. However, these strains have been
shown to carry Copy Number Variants (CNVs) [12]dave did not include nitrogen limitations
in our functional screen. We also detected 24 nartatfrom the experimental evolution studies
in genes that are associated with deleterious rootabased on our functional screen performed
in the same conditions. However, none of the nartatwere predicted to have a high impact on
the function of the gene, and so they might insteadeutral or near-neutral passenger
mutations. Thus, combining functional screeninghotations and whole genome sequencing of
populations and clones in this way, we are abldeatify both drivers of adaptation and also

unexplored fitness peaks. We conclude that evalusigartly predictable based on the
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repeatability of adaptive trajectories in indepearidavolution experiments and reflects at least in

part the underlying fitness distribution of possibiutations.
The set of beneficial mutations reveals potentialrdrers of adaptation

The analysis above defines the subset of adaptitations actually utilized by
experimental evolution. However, the screen fordfieral mutations identified a large
mutational reservoir with many additional accessidlolutionary paths [54]. To determine what
differentiates the actual mutation spectrum frombtential mutation pool, we excluded the
mutations that had already been identified in expental evolution, and found 369 potential
adaptive mutations that were unobserved in theiegisvolved populations. Given the
population size of the cultures used for experimieenolution (18to 10° cells depending on
the experimental set-up), the number of generagpown (50 to 1000 generations), and the size
of the yeast genome (~12 megabases), every basgionunust have been explored many times

in the ensemble of experiments.

We used our functional screen to determine whetteemutations actually selected for
during experimental evolution differed from the gratial adaptive mutations that were never
recovered. We detected a statistical differencevéen the fitness of the beneficial mutations
observed irversus absent from the experimental evolution studiegluicose-limitation
(Wilcoxon rank-sum tesp=0.02) but not in phosphate-limitations (Wilcox@mk-sum test,
p=0.6) or sulfate-limitations, which are dominatgdtbe fitness increase causedShL 1
amplification (Wilcoxon rank-sum tegi= 0.06 an¢=0.34 in the absence 80UL1) (Figure
5A). The small number of mutations detected in poputatevolved under sulfate and

phosphate-limitations (n=94 and 54) may have lichdar ability to detect a similar fithess
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differential as observed in glucose-limitation (242 This would suggest that the observed
mutation spectrum is driven by the fitness of pb&teneficial mutations. The observed
mutation spectrum could also be biased away frarhighest fithess mutations by differences in
mutation rate, as previously proposed [10]. Likéhg lack of mutations in these genes may be
the result of a combination of all of these factamsluding random chance, epistatic interactions
between mutations, and/or a reflection that thd prperiment does not adequately recapitulate
the fitness of thele novo mutations. Clonal interference is also likely taypa large role.
Consistent with previous findingSUUL1 dominates in the functional screen and in the tiautal
spectrum Eigure 5B), but other highly beneficial mutations (>20% &8s increase) such as
mutations inAMAC1 andPHO3, two genes coding proteins implicated in coppet pimosphate-
sulfate metabolism, respectively, are also potedtigers but are never recoverddgure 5B)
[10,55]. Conversely, in glucose limitation, manybgcial mutations of similar fithess are
possible, and so more variety in outcomes and lerosaimpling of the mutational reservoir is

observed.

Mutational spectrum in the absence of the main adajve mutation

To investigate the discrepancy we observed betweesingle-step fitness landscape and
the observed mutational spectrum, and to testrb@igiability of experimental evolution, we
wanted to test if we could detect unobserved adaptiutations by inhibiting the selection of the
main driver of adaptation. We have shown in presiaork thatSUL1 amplification dominates
the mutational spectrum [42,43] and is the mutatwth the highest fithess in our screen
(Figure 5B). Additional adaptive mutations might be undetbldan sulfate-limited conditions
due to the presence of such a strong fithess peakypothesized that by eliminating the

selection of th&UL1 amplification, a variety of smaller effect mutatowill be selected, an
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outcome more similar to the pattern observed icage-limitation. To explore the mutational
landscape in the absence of the main adaptive imitate screened two evolved populations in
which noSUL1 amplification was detected by gPCIHdure 6A) and aCGH (data not shown)
even after 200 generations of cultivation in seHttnited conditions. The fitness of the clones
and populations witholUL1 amplification (~30%) Eigure 6B) are on the lower end of the
fitness range of previously studied evolved clongl SUL1 locus amplifications (37% to 53%)
[43]. To establish which mutations were responsibtehis phenotype, we performed whole
genome sequencing and called SNPs and INDELs aflémes and the populations isolated at
generation 200. One nonsense mutation was detictee previously identified adaptive gene
SGF73 for one of the clonesT@ble S4. Two independent non-synonymous mutations (N263H
and N250K) in the coding-region 8UL1 were also detected in both populations. Wild type
strains containing those mutations were createdrendetected a fitness increase of 23.1%
(x2.3) for the strains carrying N250K and 17.7%.22) for the strain carrying N263H. In
addition, for the second clone, we detected a b.ddtetion on chromosome 1V (4.8kb, 587839-
592999) affecting four geneBNIP16, PAAL, IPT1 andSNF11) (Figure 6C). From our

functional screens, we found that deletion$Rifl andSNF11 are beneficial in glucose and
sulfate-limited conditions (10 to 20% fitness irese) but mutations in these genes were never
detected in any of our previous evolved populatigigure 5B). Since these genes are adjacent
on the chromosome, we suspected that one of tleess gnay be a false positive, resulting from
a known artifact called the neighboring gene effg6i. To decipher which deletion drives the
increased fitness, we used complementation scresng centromeric plasmids, and found that
the deletion of either gene drives the fithessdase in the evolved straiRigure 6D). SNF11 is

a subunit of the SWI/SNF chromatin remodeling campivhich is known to act as a tumor
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suppressor in humans [57], whileT1 is implicated in the metabolism of membrane
phospholipids and nutrient intake [58]. Thus, sreffiéct mutations detected in the functional
screen are relevant although they may not be destextfirst in experimental evolution. We
predict that additional evolution experiments tleahove theSUL1 amplification path would

eventually explore even more alternative accessioddutionary routes.
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DISCUSSION

Our work addresses a central topic in evolutiomsojogy, the relationship between
genotype and fitness and how evolution is consgchotespite the presence of alternative
accessible paths. For this purpose we generatédaheearly complete set of possible beneficial
mutations and a catalog of mutations actually oleseduring long term experimental evolution.
Using those two datasets, we were able for thetiire to compare potential and actual

beneficial mutations and begin to understand wiyesmutations are selected or not.

Patterns and reproducibility of evolution

By compiling a catalog of >1,000 mutations ideswtifin 109 independent evolution
experiments from this study and othefalfle S4, we were able to ask a variety of questions
about the reproducibility of adaptation, and thetdiees of beneficial mutations over multiple
conditions and ploidy states. We detected an exafdsss of function mutations in haploids, as
previously shown by Kvitek and Sherlock [11]. Moveowe estimated that mutations predicted
to modify gene expression level are statisticatisiahed in diploid compared to the number in
haploids. Mutation rate has been shown to be sinmildiploids and in haploids [59,60],
suggesting differential selection or a mechanissetian genetic context and not on the
mutation rate. Several studies have also showmitb#dtions have a greater effect on the fitness
of haploids than heterozygous diploids [61], whigtwere also able to show, and that the
frequency of fixation is higher in diploids [40].W¢htions affecting cis-regulating regions have
often been described as co-dominant while mosingpgigion mutations will be recessive [47].

Large CNVs have also been seen to be enrichegloidibackgroundsersus haploids [42],
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suggesting that a diploid context for aneuploidgt &NVs might buffer the detrimental cellular

effect seen in haploids [62,63].

In agreement with previous reports [11,17,19,42 ,8@] detected that selection of
mutations under laboratory controlled conditiorsutes in a non-uniformity of the distribution of
mutations across the genome, as we detected oedrwndred recurrently mutated genes
(Figure 3A). We detected that the same beneficial phenotgpeadse through identical
genomic changes (recurrently mutated genes) [1@ddJalso through different, apparently
unrelated mechanisms as 85% of the genes werénhardyce by a mutation. As the recurrence
based method offers an unsatisfactory predictiah@impact of mutations on cellular fithess
[64], functional screening of all mutations wadl séquired to discriminate neutral and

passengers mutations from causative mutations.

Experimentally surveyed set of beneficial mutations

To solve this problem, we built a nearly completed beneficial mutations based on
both gain and loss of function of nearly every genthe yeast genome. This data set was
generated by competing libraries of systematiocaigated mutant straies masse and then by
analyzing the results by barcode sequencing. Whetibnal screen revealed that most single
gene deletions or amplifications did not affectfib@ess of the cells, demonstrating the
robustness of cellular fitness to subtle genomangdes Figure 2). We also detected 506
mutants with a fithess increase. A large proportibthe beneficial mutations originated from
the overexpression collection, revealing that gdifunction mutations positively affect cellular
fitness in this background. These data illustragelarge number of accessible adaptive

mutations, and allow us to compare this list oleptial beneficial mutation with mutations
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selected during the course of laboratory evolugiwperiment, in order to ask which mutations

are selected and why.

Evolution is constrained by the fitness of adaptivenutation

By combining the beneficial mutations detectedh functional screening and the
mutational spectrum of evolved clones and poputatiave were able to determine that 50% of
the mutations detected in evolving populationsteneeficial. As would be expected, this number
is higher than previous estimates of the null diation of mutation fithess using mutation
accumulation lines performed in yeast (6% to 13%llofutations) [65]. We also found that
some mutations dominate the mutational spectruhonyinating the fithess of beneficial
mutation. For instance, a particular large effeatation is nearly always observed in sulfate-
limited conditions, while a diversity of smallerfeft beneficial mutations was detected in both

glucose and phosphate-limitations.

The comparison also revealed a large number ohpatdeneficial mutations that have
never been observed in any Evolve and Resequamtiestso farKigure 5B). We wanted to
see if those mutations corresponded to inaccessvaleitionary paths or if they could be
selected in some specific conditions. We decidedddus on sulfate-limitation, as one primary
evolutionary path is utilized in this conditioB{L1 amplification). We looked in evolved strains
without this mutation, and found that alternatieates could then be explored. The fitness of the

evolved population linked to the deletion of twgaaeént gened PT1 andSNF11).

Remaining open questions
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While producing for the first time at this scalsiagle-step fitness landscape of single
gene mutations in the yeast genome, the functsgraken using both amplification and deletion
collections has several limitations. The collecsi@vailable in yeast are based on single gene
copy number changes and do not allow study of gipgint mutations, and protein-coding
mutations that are not mimicked by dosage chamgesgenic functional elements or
combinations of mutations. To explore the impactaof non-genic regions and small genes not
present in the yeast collections, billions of indual and combined mutations need to be
generated in a comprehensive way, similar to deggational scanning of proteins [66], the
Million mutation project [67] or by using newly @td collection such as the tRNA deletions
collection [68] or large telomeric amplicons [Suim&) submitted, see Supplementary file]. A
major challenge now is to identify the combinatairgenetic variants that modulate the activity
of specific pathways. Previous studies in simpi@robial and viral systems have provided
evidence for both antagonistic and synergistictapis between beneficial mutations [39,69-72].
Synthetic genetic arrays and other similar appreacising th&. cerevisiae deletion collection
have been used to characterize negative and posiirgtatic relationships, and a nearly
complete yeast genetic interaction network has lgeeerated using double mutants grown
under a single lab condition, showing that gendkiwmthe same pathway show similar
interaction patterns [73,74]. Further studies whibse resources would also allow us to move
beyond single gene effects and begin to underdtandmultiple genes in CNVs and
combinations of mutations shape the fitness lamquscaBy expanding and developing these
techniques, the increase of studies combining teng experimental evolution and whole
genome sequencing will likely reveal additional teelinutational signatures and support the

causal link between mutations and phenotypes ssitieaimpact of synonymous mutations on
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gene splicing as has been recently shown in on@sgg®], and the impact of mutations on cis-

regulation in the genome [47,76].

Conclusions

Our analysis makes clear that the identificatioaddiptive mutations requires accurate
functional screening integrated with variant disegvto allow the confirmation of frequently
observed mutations but also the discovery of adtiéra adaptive mutations. Our results predict
that the increase of evolved population sequendatg combined with unbiased and
comprehensive functional information to broadly ipue genome on a large variety of
conditions and genetic backgrounds will result m@e complete characterization of the

mutational landscape of adaptation.
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METHODS

Strains and media used in this studyThe MoBY-ORF collection ifEscherichia coli

was obtained from Open Biosystems and stored & e&0individual strains in 96-well plates.
The plates were thawed and robotically replicateid &.B-Lennox (Tryptone 10g, Yeast extract
5g, NaCl 5g) agar plates containing 5ug/ml of wtctine, 12.5pug/ml of chloramphenicol and
100pg/ml of kanamycin and grown at’@7for 14 hours. Colonies were harvested by additifon
5ml LB-Lennox to each plate and subsequently pod6éb Glycerol was added and aliquots of
1ml, containing 2x10cells/ml, were frozen at -80C. Plasmid DNA waspared from theE. coli
pool and then transformed inBcerevisiae S288C derivative strain DBY10150 (ura3-52/ura3-
52) using a protocol adapted from Gietz and Wo@083%). The yeast transformants were
selected on —URA and 200ug/ml G418 plates. 88 iéstormants were pooled together, giving
an average library coverage-#0x. The MOBY-ORF v2.0 collection was obtained frim
Boone lab and crossed for 3 hours with YMD17®8TAT a, leu241). Clones were selected on
MSG/B and G418 (200 g/ml) twice and pooled togethibe MATa/MAT a Magic Marker
collection was obtained already pooled from then8pelab. ThéIATa Magic Marker library
was obtained frozen from the Caudy lab; the straiie selected on -LYS and -MET and
pooled together. The barcoder collection was obthinozen from the Nislow lab. The plates
were thawed at room temperature, replicated onto &Rd G418 (200 g/ml) and crossed with
FY5 (MATa, prototrophic strain), the strains were then getbon MSG/B+G418 (200 g/ml)

twice and pooled together. A list of strains usethis study can be found Trable S1

Continuous culture in chemostats and pool competiin experiments Nutrient

limited media (sulfate-limited, glucose-limited apldosphate-limited) as described in [19,42,77]
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were complemented with uracil and histidine (20mddr the Magic Marker pools. The 200ml
chemostat vessels were inoculated with 1ml of gact (~2x10 cells). Cultures were grown at
a dilution rate of 0.1#0.01 volumes/hour at 3G. We grew the five pools in chemostats for 30
hours in batch and then switched to continuousucellfThe cultures reached steady state after
~10 generations and were maintained for 20 geastn the three conditionkigure S1). A
sample taken just after we turned the pump on,deagynated Generation 0 (GO0), then samples
were harvested every 3 generations on average.|8sfop cell count and DNA extraction were

passively collected twice daily. Each pooled contipet was performed in duplicate.

Genomic DNA preparation, Plasmid extraction, gPCR Genomic DNA was

extracted from dry, frozen cell pellets using timeaSh-and-Grab method [78]. Plasmids from the
MoBY collections were extracted with a Qiagen miegpprotocol QIAprep Spin mini prep kit

kit; Qiagen, Hilden, Germanwsing the following modification: 0.350mg of gtabeads were
added to a cell pellet with 250l of buffer P1 aodtexed for 5min. Then 250ul of buffer P2
was added to the mix of cells and beads and 350piféer N3 was added to the solution, before
centrifuging for 10 min. The supernatant was thgpliad to the Qiagen column following the
recommendation of the Qiagen miniprep kit. PlasBINA is then eluted in 50l of sterile

water. Smash-and-Grab Genomic DNA was extracted tioy pellet of cells using Smash-and-
Grab method and used for barcode verification mdlsi strains using PCR amplification and
Sanger sequencing as previously described [43].e&th sample, the plasmid copy number was
determined using the copy humbeka@nMX relative to the copy number BINF2, a gene

located on chromosome 4 and absent from the twoYaBlections (se€&igure S5. The

primers used are includedTable S8 Microarray, whole genome sequencing, SNP cabimg

gPCR analysis were performed as previously dest{##]. Microarray data from this article
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have been deposited in the Gene expression Omrapository under accession GSE58497
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?toksjgtsgwmdhajdud&acc=GSE58497).
The fastq file for each library is available fron€BI Short Read Archive with the accession

number PRINA248591 and BioProject accession PRJBIZEE!

Barseq experiments and fithess measuremermplifications of the barcodes were

performed using a modified protocol [25]. Uptagdmates were amplified using primers
containing the sequence of the common barcode psitheld), a 6-mer tag for lllumina
multiplexing (in italics) and the sequence requif@dattachment to the lllumina flowcell
(underlined) Table S8) PCR amplifications were performed in 100! volum&ng Roche
FastStart DNA polymerase with the following conalits; 94C/3min, 25 cycles of 9€/30sec,
55°C/30sec, 7Z2/30sec, followed by 7Z/3min. PCR products were then purified using the
Qiagen MinElute PCR Purification kit (cat. No. 2800quantified using a Qubit fluorometer and
then adjusted to a concentration of 10pug/ml. Egohlmes of normalized DNA were then
pooled and gel purified from 6% polyacrylamide T8&s (Invitrogen) using a soak and crush
method followed by purification and concentratiaing Qiagen Qiaquick PCR purification.
After quantification using a Qubit fluorimeter, tdries were sequenced using the standard
lllumina protocol as multiplexed single read 36agcles on several lanes on an lllumina
Genome Analyser lIx (GAIl). We sequenced thirty tipléxed libraries (UPTAGS only) on
several lanes of an Illlumina GAIll and we obtainaedcwerage 25,664,072 million reads that
perfectly matched the molecular barcodes per §bfaable S9) The fastq file for each library is
available from the NCBI Short Read Archive with Heeession number PRINA248591 and
BioProject accession PRINA249086 and are listdabie S10 The 6-mer multiplexing tags

were reassigned to a particular sample using awcuBer! script$upplementary File 1. Then,
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each barcode was reassigned to a gene using astdndary search program (program in C,
Supplementary File 2. Only reads that matched perfectly to the retated yeast deletion
collection [25] or MoBY-ORF collection [32] were ed. For the barcoder collection, the
barcodes were recovered using a compiled listldfaatodes previously published. We were
able to recover 1885 barcodes, where1624 barcoeesnecovered from the barcode list of the
yeast deletion collection and 260 barcodes fronYiest Barcoders collection [31,35]. Multiple
genes with the same barcodes were discarded. fiessivith less than 20 counts across the
different samples were discarded. The numbergaihstidentified for the five collections in the
three conditions are summarizedTliable SQ To avoid division by 0 errors, we added 10 to
each barcode count before normalizing to the totaiber of reads for each sample. To quantify
the relative fitness of each strain during growthhe various conditions, we restricted our
analysis to when the samples reached ‘steady-fth#se defined as generations 6 through 20,
and used generation 0 gsThe linear regression of the logatios between generation 6 and 20
to generation 0 was used to calculate the fitnessch strain and the two replicates
measurements were then averaged. The source cpawided in the supplementary materials

(R script,Supplementary File 3.

Validation of the fitness measurements and pairwiseompetition. To ensure that

the pooled fithess measurements accurately refieditness of each strain, we measured the
relative fitness of 51 strains from the deletiod @tasmid collections that were detrimental,
neutral or beneficial, by individual competitiona@gst a control strain marked with a fluorescent
protein (&FP) in the three conditions used in the pooled expent. Fithess measurements of
individual clones were performed as previously dbsd [43] using FY strains where thi©

locus had been replaced weGFP (MATa: YMD1214 andVATa/MATa: YMD2196) (Figure
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S4, Table S}. The fitnesses are similar in both assays andhgerved a strong positive
correlation (B=0.83) between the large pool screen and the iddélifitness measurements
(Figure S4 and Table SY. A second concern is that use of the yeast dalles to determine the
association of fitness changes could be comprontigedutations or copy number changes
preexisting elsewhere in the genomes of the pasttaihs. To limit this known artifact, most of
the barcoded pools used for these experiments aveated either by fresh transformation (in the
case of plasmid collections) or from a fresh crafsthe commercially available collection stocks
with a wild-type strain to dilute any possible pasger mutations (See aboveMiaterials and
Methods). To avoid de novo mutations achieving high frergey and skewing our fitness

measurements, we limited our pooled and pairwisepatition to 20-25 generations.

To determine the number of mutations of our valarapanel, we screened these fifty-one
clones for what is known to be the most common rséary mutation detected in the deletion
collection, mutations in the gefe@H12, which is involved in the regulation of cell pifeliation
[25,74]. We confirmed the lack of mutations in WhEll2 gene in the individual strains by
Sanger sequencingdble S7). We also detected no copy number changes aoji@ation level
using microarray analysis of the last sample ofcthrapetition of the low copy plasmid
collection, though this approach would only detébtVs that achieved at least ~10% population

frequency (data not shown).
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FIGURE LEGENDS

Figure 1. Experimental design for genome-wide poaflecompetition experiment.The
proportion of each strain was measured every 3gengérations during a pooled competition
assay, in which all strains from one collection everixed together in the same ratio and grown
at steady state for 20 generatioA$.(The frequency of the corresponding barcode et &éene

point was measured using the barseq metBpdad the fithess of each strain computell (

Figure 2. Distribution of the fitness effects of sigle gene amplification and deletion
Distribution of the fitness measurements of thestil@h collections and the plasmid collections
in three conditions: glucose-limited, sulfate-liedtand phosphate-limited chemostats. The
fitness of each strain is shown as small line a dsstribution for the control collection (in
grey). The thick black line represents the mearshed grey lines indicate the cut-off of +10%

measured using control pooled collection.

Figure 3. Recurrently mutated genes reveal how ewation is constrained A- Repeatability
of adaptation and parallelism at the gene levehdSelassified by number of mutations detected
during Evolve and Resequence studies. 154 genesfauand to be hit by more than one
mutation. 48 recurrent genes were found mutatedare than one conditions (small pangh.
Enrichment of high impact mutations in recurremiytated genes when compared to genes

found with only one mutation. Error bars are 95% CI

Figure 4. Driver mutations. A- Boxplot representing the number of driver mutagiand the
ratio of driver to total mutations detected in exal clones and populations. The significance of

the difference between clones and populations wstimated using Wilcoxon-ranked teBt
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The ratio of driver mutations to mutation totahist conditions specifiqpe0.28; 0.70; 0.36; 0.78

and 0.36 for glucose-limited; sulfate-limited; YP@her and phosphate-limited respectively).

Figure 5. Alternative accessible evolutionary paths A- The fitness of beneficial mutations
found (F) in Evolve and Resequence studies isssitally significantly higher than the fitness of
beneficial mutations not found (NF) in glucose-lation but not in phosphate-limitation and
sulfate-limitation. The significance of the diffee between the two boxplots for each condition
was estimated using a Wilcoxon-ranked té&t.Each point represents the fitness of a strain and
the proportion of Evolve and Resequence sampldstivi corresponding gene mutat8dL1
dominates the fitness and mutational spectrum.r@kreitations have a high fitness but have
never been detected in Evolve and Resequence staliemight correspond to potential drivers

of adaptation.

Figure 6. New beneficial mutations are selected in absencetbe main driver. A-The copy
number ofSUL1 was assessed using qPCR analysis on samplesftaketwo independent
experiments in whiclBUL1 did not amplify (green and pink), compared witb\pously

published data from wild type strains (in greyayen et al. 2014B- Fitness coefficient of
population samples at generation 5, 50 and 20Qrentitness of two clones isolated at
generation 200C- Small deletion (~5kb) detected in population frerperiment 2 on
chromosome IV encompassing four genes (betweekdtsg¢c polyT sequences are present at the
breakpoints, the color of the boxes represent tiemttion of the genes (yellow: gene on the
Watson strand, grey: genes on the Crick strabd}itness coefficient of the two deletion strains
iptlA andsnfllA, and both deletion strains complemented WHF1 or SNF11 on a low copy

plasmid in sulfate limited condition.
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SUPPLEMENTARY FILES

Figure S1.Steady-state in continuous cultures is reached ategeration 6.Cell density over
time for each pool grown in the chemostat in glechsited, sulfate-limited and phosphate-

limited for 20 generations.

Figure S2. Relative frequency over time of three stins from four collections. Each box,
represents the relative frequency of one straim bwe2, plotted as the lggatio of the frequency

at generation x relative to its frequency at getr@ma= O over the ~20 generations of steady-state
competition. Each line, colored blue and red, @spnts the linear regression used to calculate

the relative fithess between generation 6 and 20.

Figure S3. Distribution of high impact mutations. A- Enrichment of disruptive mutations
(high impact) near the beginning of the gene. Tigeificance of the difference between the
three boxplots representing the distribution ofrtih@ations within genes was estimated using a
Wilcoxon rank-sum testB- Distribution of the gene size between genes faecdrrently
mutated and genes found with only one mutation. Sigmificance of the difference between the
two boxplots representing the distribution of tiees of genes in the two sets was estimated

using a Wilcoxon rank-sum test.

Figure S4 Fitnesses of 51 mutant strains measured in pool arseq and in pairwise
competitive assaysBecause the fithess measured in the pooled exgericorresponds to the
fitness relative to the population's mean fithesscompared the pooled fitness data of 51
strains to individual fitness assays and founda@ngt positive correlation. Pearson’s correlation

coefficient R2= 0.83. G: Glucose-limited, S: Sudfdimited and P: Phosphate-limited conditions.
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Figure S5 Fluctuations of the copy number of the plasmids matored by gPCR on

population samples over timeA-. Each color corresponds to a condition as desdrib panel

B. B- Average of the plasmid copy number for both tighltopy and the low copy plasmid

collections grown for 20 generations in glucoseikah, sulfate-limited and phosphate-limited

conditions.

Table S1: Strains and strain collections used in th study.

Table S2: Fitness measurements from mutant collecih competitions.

Table S3: Fitness measurements from barcoder colléan competitions.

Table S4: Identities, frequencies, and predicted #&dcts of mutations discovered in

experimental evolution studies.

Table S5: Beneficial mutations from the mutant cokction competitions.

Table S6: Beneficial mutations in evolved samples.

Table S7: Fitness measurements from individual congdition experiments vs pooled

experiments.

Table S8: Primers used in this study.

Table S9: Barcode sequences used in this study.

Table S10: Summary statistics for barcode sequenarexperiments.

Supplementary File 1: Perl script for demultiplexing sequencing files.

Supplementary File 2: C script used for barcode aggnment.
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Supplementary File 3: R script used for linear regession for fithess calculations.
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Number of mutations ~ This studyl
YPD 720 NA

Glucose 224 23 2
Conditions Sulfate 97 76
Phosphate 54 51

Other 72 NA 4
. Haploid 1017 75
Ploidy  Giploid 150 75
Sample Clones 305 75
P Population 862 75

Table 1: Mutational
catalog subdivided by
conditions ploidy and

sample
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Class All  diploid haploid pvalue*  qvalues SNPeff

Stop gained 123 5 118 0.003 0.00¢ High
Start lost 8 1 7 0.97 0.591 High
Stop lost 2 0 2 0.59 0.46¢ High
Frameshift 6 0 6 0.74 0.49¢ High
Non-synonymous 817 97 720 0.15 0.201 Moderate
Codqn . . 3 0 3 0.51 0.46¢ Moderate
deletion/insertion

Synonymous 142 15 127 0.46 0.46¢ Low
5'upstream 13 7 6 0.0001 0.00z Modifier
Intron 5 1 4 0.63 0.46¢ Modifier
Intergenic 48 24 24 0.0001 0.00% Modifier
Sum 1167 150 1017  2.5e-315 1.68e-314

1  Table 2 Comparison of the mutational signature in hapémd diploid strains
2 *Chi-square and Fisher's exact tpgalues
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Figure 1

A. Competition en masse B. Determine the relative frequency C. Calculate the fitness
of each strains by barseq
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Figure S2

Deletion (haploid) experiments
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Figure S4

Fitness (Pool in %)
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