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ABSTRACT  1 

  High-throughput sequencing technologies have enabled expansion of the scope of genetic 2 

screens to identify mutations that underlie quantitative phenotypes, such as fitness improvements 3 

that occur during the course of experimental evolution. This new capability has allowed us to 4 

describe the relationship between fitness and genotype at a level never possible before, and ask 5 

deeper questions, such as how genome structure, available mutation spectrum, and other factors 6 

drive evolution.  Here we combined functional genomics and experimental evolution to first map 7 

on a genome scale the distribution of potential beneficial mutations available as a first step to an 8 

evolving population and then compare these to the mutations actually observed in order to define 9 

the constraints acting upon evolution. We first constructed a single-step fitness landscape for the 10 

yeast genome by using barcoded gene deletion and overexpression collections, competitive 11 

growth in continuous culture, and barcode sequencing. By quantifying the relative fitness effects 12 

of thousands of single-gene amplifications or deletions simultaneously we revealed the presence 13 

of hundreds of accessible evolutionary paths. To determine the actual mutation spectrum used in 14 

evolution, we built a catalog of >1000 mutations selected during experimental evolution. By 15 

combining both datasets, we were able to ask how and why evolution is constrained. We 16 

identified adaptive mutations in laboratory evolved populations, derived mutational signatures in 17 

a variety of conditions and ploidy states, and determined that half of the mutations accumulated 18 

positively affect cellular fitness. We also uncovered hundreds of potential beneficial mutations 19 

never observed in the mutational spectrum derived from the experimental evolution catalog and 20 

found that those adaptive mutations become accessible in the absence of the dominant adaptive 21 

solution. This comprehensive functional screen explored the set of potential adaptive mutations 22 
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on one genetic background, and allows us for the first time at this scale to compare the 1 

mutational path with the actual, spontaneously derived spectrum of mutations.  2 



5 

 

AUTHOR SUMMARY 1 

Whole genome sequencing of thousands of cancer genomes has been conducted to 2 

characterize variants including point mutations and structural changes, providing a large 3 

catalogue of critical polymorphisms associated with tumorigenesis. Despite the high prevalence 4 

of mutations in cancer and technological advances in their genotyping, cancer genetics still 5 

presents many open questions regarding the prediction of selection and the functional impact of 6 

mutations on cellular fitness.  Long term experimental evolution using model organisms has 7 

allowed the selection for strains bearing recurrent and rare mutations, mimicking the genetic 8 

aberrations acquired by tumor cells. Here, we evaluate the functional impact of thousands of 9 

single gene losses and amplifications on the cellular fitness of yeast. Our results show that 10 

hundreds of beneficial mutations are possible during adaptation but not all of them have been 11 

selected in evolution experiments so far performed. Together, our results provide evidence that 12 

50% of the mutations found in experimentally evolved populations are advantageous, and that 13 

alternative mutations with improved fitness could be selected in the absence of the main adaptive 14 

mutations with higher fitness. 15 

 16 

BLURB  17 

A combined view of potential adaptive mutations, generated by a systematic screening approach, 18 

coupled with the mutational spectrum derived from experimentally evolved yeast reveals the 19 

usage of accessible evolutionary solutions. 20 
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INTRODUCTION 1 

Whole genome sequencing of thousands of human tumors has uncovered a huge number 2 

of variants including point mutations and structural changes, providing a large catalog of mutated 3 

genes across all major cancer types [1-4]. Recent advances in profiling initiatives and systematic 4 

genomic analysis of tumors have identified novel mutated genes and rearrangements, raising the 5 

prospect of discovering new important drivers of tumorigenesis [2]. However, another recent 6 

study discovered that within the list of putatively significant genes, the number of false-positives 7 

is also increasing [5]. Given the vast number of mutations identified in most tumors, determining 8 

the functional impact of each mutation is a daunting task. The most frequently used approach in 9 

cancer genetics to identify the few driver mutations among the many mutations that don’t affect 10 

fitness (often called passenger mutations) relies on the hypothesis that genes and pathways 11 

important for the development of the disease are recurrently mutated in independent tumors. 12 

Those candidate driver genes can then be tested experimentally. Based on such predictions, 13 

genes responsible for cell proliferation, drivers of oncogenesis, cell survival, cell cycle, invasion 14 

and drug resistance have been identified using RNAi  and pools of short hairpins in nematodes 15 

and mammalian cell cultures [6,7 ,8].  While informative, these approaches have not yet been 16 

able to assess in an unbiased way the full contribution of mutations to the genetic basis of cancer 17 

initiation.   18 

Within the microbial experimental evolution research community, there is a similar need 19 

to identify loci contributing to adaptation (also known as adaptive mutations) in the growing list 20 

of mutations identified in laboratory-evolved populations. Several recent Evolve and Resequence 21 

studies [9], where populations or clones have been sequenced after adaptation to a specific 22 

condition, have dramatically increased the list of mutations associated with adaptation in 23 
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different conditions [10-18]. Within this rapidly increasing dataset, only a few mutations have 1 

been fully characterized with regard to function. Similar to studies investigating human disease 2 

candidate genes, large-scale studies from the microbial community have distinguished adaptive 3 

mutations from background neutral mutations on the basis of statistical approaches such as 4 

frequency, enrichment and recurrence [10,11,17,19-23]. 5 

Despite sophisticated genetic systems, dissecting the functional consequences of every 6 

mutation observed in a population is still tedious, though generally experimentally 7 

straightforward. For example, simple genetics can be used to reassort mutations, followed by 8 

fitness characterization of segregants carrying individual mutations.  This strategy has been 9 

performed on a few evolved clones and has demonstrated that evolved clones isolated after 10 

several hundred generations of propagation in nutrient-limited chemostats carry 1 to 2 adaptive 11 

mutations [24] [Sunshine et al, submitted, See Supplementary file].  Saccharomyces cerevisiae is 12 

particularly well suited for determining the relationship between genetic variation and fitness at 13 

genome scale. Ideally, the functional effects of every possible mutation should be tested.  Since 14 

recreating and annotating all possible mutations is not yet feasible, the field has instead created 15 

systematic dosage series to mimic the most common mutations such as loss- or gain-of-function 16 

(LOF and GOF) and deletion or duplication of genes [25-29]. While mimicking LOF, GOF, 17 

deletion and duplications, those collections doesn’t take into account mutations that would not be 18 

mimicked by copy number changes, such as specific protein coding mutations that generate new 19 

activities or more subtle loss of function effects than full knockout alleles. Despite the large 20 

number of studies that have used these barcoded collections to detect haploinsufficiency, dosage 21 

sensitive genes, synthetic lethality, drug-sensitive mutations, and a huge number of other 22 

phenotypes [27,30-38], only a few studies have looked at beneficial mutations (mutations that 23 
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increase fitness). For example, one study quantified antagonistic pleiotropy in a variety of 1 

laboratory conditions and determined that while 32% of deletion strains are less fit than a wild-2 

type reference, only 5.1% of the strains were more fit [39]. Another study identified a large 3 

number of heterozygous deletion mutations as being beneficial, but also demonstrated that 4 

haploproficiency was context-dependent [26].  5 

Most of these studies have used phenotype data as a way to investigate gene function.  6 

However, we can also approach these data from an evolutionary genetics perspective: the ability 7 

to identify beneficial mutations en masse allows us to survey the set of beneficial mutations upon 8 

which adaptive evolution acts. Knowing this landscape allows us to address a number of open 9 

questions: what is the distribution of fitness effects of mutations, and how does this distribution 10 

compare for loss of function vs. gain of function mutations? Which of the possible beneficial 11 

mutations are actually utilized by evolution? Are these usage patterns driven strictly by the 12 

hierarchy of mutation fitness, or do other factors affect which mutations are observed?  How 13 

much does the distribution of adaptive mutations differ among different genotypes or selective 14 

conditions?  For example, how do haploids and diploids differ in the available pool of beneficial 15 

mutations, and how might such differences affect the paths by which adaptation can proceed?  16 

Finally, to what degree can evolution be perturbed to follow new paths? 17 

The goal of our research was to address these questions using a paired functional 18 

genomics and experimental evolution system. We first created a near-comprehensive single-step 19 

mutations list by measuring the fitness of almost all single S. cerevisiae gene deletions and 20 

amplifications. We accomplished this using pooled competition of thousands of mutants in 21 

nutrient limited chemostats combined with barcode sequencing. We found that while most single 22 

gene copy number changes are neutral or negatively affect fitness, ~600 mutations increased 23 
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fitness and correspond to potential evolutionary solutions. We next compared the single-step 1 

mutation fitness to the actual mutation spectrum derived from experimental evolution studies 2 

performed in this study and also collected from the literature. We found that 50% of the 3 

mutations are predicted to positively affect fitness. In sulfate-limited condition, mutations in one 4 

gene dominate both the single-step fitness landscape and the observed mutational spectrum, 5 

while in the two other conditions the increase in fitness is driven by a large number of beneficial 6 

mutations of smaller effect size.  Finally, we show that these constraints can be modified by 7 

eliminating the highest fitness paths, upon which the evolving cultures explore alternative 8 

beneficial mutations.  9 
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RESULTS 1 

A comprehensive survey of first-step mutations  2 

Pooled competition experiments followed by an Illumina-based barcode sequencing 3 

method have been used to accurately determine the fitness effects of hundreds of pooled mutants 4 

[25]. We performed a dose-response curve for ~80% of all the genes of the yeast genome in three 5 

different nutrient-limitations using five different yeast barcoded genomic collections (Table S1) 6 

outlined as follows: two deletion collections in which each gene is replaced by a selectable 7 

marker and a unique DNA barcode in one haploid and one heterozygous diploid background 8 

[34], one control collection where thousands of unique barcodes have been placed at a single 9 

known neutral genomic location [35], and finally two collections of diploid strains bearing 10 

plasmids where each gene and its native promoter has been cloned into a barcoded plasmid 11 

present at either low or high copy [32,33]. A schematic description of the method is presented in 12 

Figure 1. While the individual elements of the methodology used here are well established in the 13 

literature, this work is the first attempt to compare spontaneously derived mutations from 14 

experimental evolution with the potential set of adaptive mutations discovered using a systematic 15 

genetic screen. 16 

Using the five pools described above, we conducted a total of thirty screens in three 17 

previously explored chemostat culture conditions (phosphate-limitation, glucose-limitation and 18 

sulfate-limitation). The proportion of each strain was measured during a pooled competition 19 

assay, in which all strains from one collection were mixed together at the same abundance and 20 

grown for ~20 generations (Figure S1). To overcome stochastic effects due to drift, we used 21 

cultures of large population size (~109 cells), as this strategy has been a successful way to 22 



11 

 

maintain diversity [26]. The pooled competitions were performed during a very short period of 1 

time (20 generations) to limit the effect of de novo mutations occurring during population 2 

growth. While other studies have been able to quantify fitness effects of mutations from as few 3 

as two time-points, we sampled the mixed population every three generations to maximize the 4 

accuracy of the fitness quantification. The frequency of each strain at each time point was 5 

measured using barcode sequencing (barseq) (Figure S2) [25].  6 

The functional screening of mutations uncovers hundreds of accessible 7 

adaptive mutations  8 

We quantified a total of 100,853 relative fitnesses ranging from -36.5 to +42.8% based on 9 

an average of 462 reads per gene per competition and created an experimental fitness landscape 10 

of single gene copy number change from four different yeast collections in three conditions  11 

(Figure 2 - Table S2).  Mutants of 2,133 genes were measured in all twelve experiments (three 12 

conditions and four collections), with an additional 2,953 genes sampled by at least one 13 

experiment. To determine the inherent noise in our experimental system, which could originate 14 

from strain construction, pool generation, competition and/or sequencing, we first quantified the 15 

relative fitness of ~2,000 isogenic barcoded wild-type strains pooled and competed in the same 16 

way as for the other four strain collections. As expected, the fitness distributions of these mutants 17 

were tightly centered on 0 (Figure 2 - Table S3).  We then used the maximum and minimum 18 

fitness difference detected in the control pool as conservative cutoffs (±10%) to determine which 19 

strains from the four other collections had a strong fitness benefit or deficit when compared to 20 

the wild type strains. This cutoff also corresponds nicely with analysis from Otto based on 21 

similar evolution experiments performed by Paquin and Adams [40] demonstrating that a 22 
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beneficial mutation with a 10% fitness increase will reach 5% of the population in ~200 1 

generations and will fix in ~500 generations [41]. This analysis suggests that mutations causing 2 

less than 10% fitness increase will rarely be observed in our experimental evolution timescale. 3 

The functional screening of pooled mutants revealed that most of the mutants display wild-type 4 

fitness. Using the 10% cut-off, we detected an enrichment of mutants with a decreased fitness 5 

(n=1693 vs. 19 for the control pool) and an increased fitness (n=506 vs. 80 for the control pool) 6 

respectively compared to the control pool (Chi square, p <0.0001) (Figure 2).  7 

We focused first on the 506 mutants showing increased fitness, hypothesizing that 8 

mutations affecting these genes would be more likely to be adaptive during growth under strong 9 

selection. Despite making up just 47% of the mutations tested, 73% of the beneficial mutations 10 

we detected are from the plasmid collections where the gene copy number is increased, 11 

suggesting that in diploids, gain-of-function mutations and duplications are more likely to 12 

produce fitness gains than are loss-of function mutations. Among the genes associated with a 13 

fitness increase, SUL1 was notable with the highest fitness measure (42.8% in sulfate-limited 14 

condition for a strain carrying a high copy number plasmid). We previously demonstrated that 15 

the amplification of this gene is recurrently selected during experimental evolution in sulfate 16 

limitation, and that increasing the copy number of SUL1 via expression on both low and high 17 

copy number plasmids results in a fitness improvement [42,43].  Our screen detected a putative 18 

secondary adaptive mutation in the vicinity of SUL1 on chromosome II: BSD2, a gene involved 19 

in the downregulation of the metal transporter proteins, Smf1 and Smf2 [44,45].  The 20 

amplification of BSD2 increases the fitness of the cells by 5% and 12.4% when amplified in 21 

sulfate- and glucose-limitation conditions respectively. In our previous studies of the SUL1 22 

amplicon, we detected only three independent clones where the SUL1 amplicon excluded the 23 
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gene BSD2. The fitness of each of the 13 strains harboring an amplification containing both 1 

SUL1 and BSD2 is higher than the fitness of three strains with an amplicon containing only SUL1 2 

but not BSD2 [43]. Reintroducing BSD2 into one of the three strains using a low copy plasmid 3 

increased the fitness by 5% (37.7% to 43.8%), demonstrating that the functional screen with 4 

pooled strains is a reliable method to detect small effect and secondary adaptive mutations, and 5 

suggesting that the two mutations have an additive effect on the fitness.  6 

Our functional screens revealed the presence of hundreds of possible beneficial mutations 7 

(223 in sulfate-, 210 in glucose- and 73 in phosphate-limited conditions). We next sought to 8 

apply the functional knowledge gained from the genome-wide analyses described above to the 9 

hundreds of de novo mutations identified in laboratory evolution experiments. Using this 10 

combined dataset, our goal was to ask which particular adaptive mutations are selected and why.   11 

Mutational spectrum in microbial evolution experiments  12 

To determine the mutational signature of adaptation using laboratory evolution, we 13 

sequenced and detected 150 mutations in 16 populations and 34 clones of both haploid and 14 

diploid yeast evolved for over 100 generations (122 to 328) under conditions identical to those in 15 

which our functional screens were performed (six sulfate-, six phosphate- and four glucose-16 

limited chemostats) [42] (See Materials and Methods). To explore this question further, we 17 

also collected a large set of mutations from various Evolve and Resequence studies performed 18 

under a variety of conditions in yeast [10-12,16,43,46]. Not all the conditions overlap with our 19 

functional screens, but they are useful for cross-condition comparison. In total, we compiled 20 

1,167 mutations in 1,088 genes from 106 long-term laboratory evolution experiments conducted 21 

in eleven different conditions from nine published studies in addition to this one (Table S4). The 22 
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features of these studies and the resulting mutations are summarized in Table 1. The complete 1 

list of mutations, their frequencies, and their predicted effects are given in Table S4. The 2 

compiled mutation catalog does not take into account chromosomal rearrangements, as these 3 

events were not always measured in the different studies. 4 

LOF mutations are enriched in haploids and are depleted and recessive in 5 

diploids 6 

Comparing the mutational spectrum across many environments, strains and ploidies 7 

allows us to extract mutational signatures and infer the properties of beneficial mutations in 8 

yeast.  Ploidy in particular has been a subject of much interest since the observation that haploids 9 

and diploids adapt at different rates [40]. Two recent studies have shown that loss-of function 10 

mutations were commonly selected in evolved populations of haploid yeast [10,11]. Based on a 11 

small number of mutations tested in diploids, another study concluded that mutations affecting 12 

cis-regulating regions are co-dominant in heterozygous diploids [47]. Though these results are 13 

suggestive, because no other Evolve and Resequence studies have been performed in a diploid 14 

background, too few data have previously been available to draw firm conclusions about how the 15 

mutational landscape differs by ploidy.  16 

We divided these mutations into four groups based on SNPeff, an annotation program 17 

that predicts the functional impact of the mutation of a gene, as follows [48]: (1) high impact 18 

mutations such as frameshifts and the gain or loss of a start or stop codon; (2) moderate impact 19 

such as non-synonymous site changes and the deletion or insertion of a codon; (3) low impact 20 

synonymous mutations; and (4) modifiers, corresponding to mutations 5’ of a gene, in intergenic 21 

regions and in introns. We found that the mutation signature is different between haploid and 22 
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diploid strains (Fisher exact test, p<10-16, corrected for multiple testing). In haploids the main 1 

category of beneficial mutations is LOF by gain of a stop codon (Chi square, p=0.003, Table 2) 2 

consistent with a previous finding that LOF mutations dominate in experimental evolution of 3 

haploid yeast [11]. In contrast, LOF are depleted in diploid strains, which instead show an 4 

enrichment for intergenic and 5’ upstream mutations, suggesting that amplification and GOF 5 

mutations may be more important in this background (Chi square, p<10-4, Table 2).  This result 6 

is consistent with our previous observations that evolved diploid strains contain more and larger 7 

gene and chromosome copy number variants than evolved haploids.  We next investigated if the 8 

difference between haploid and diploid was a general rule across environments. Using only 9 

mutations discovered in haploid and diploid strains evolved under matched conditions, we 10 

detected that the mutational signature was different between haploids and diploids in glucose-11 

limitation (Fisher exact test, p<10-14) with an enrichment of LOF in haploid (Chi-square, n= 224, 12 

p<10-9), but only a slight tendency is observed in phosphate-limitation  (Fisher exact test, n=54 13 

p=0.053) and none in sulfate-limited conditions (Fisher exact test,  n=100,  p=0.72).  The 14 

difference between ploidies is likely explained by the tendency of LOF mutations to be recessive 15 

[49] compared to mutations that increase gene expression, which may be more likely to have an 16 

effect as a heterozygote. Though loss-of-heterozygosity has been observed in diploid populations 17 

[42,49], these are relatively rare. To test this directly, we determined how many LOF mutations 18 

detected as beneficial in a haploid context might lose this effect when heterozygous in a diploid. 19 

We compared 58 beneficial mutants from the haploid deletion collection to the fitness of the 20 

heterozygous diploid mutants and found that these mutations do show a tendency to be recessive, 21 

with the average loss of fitness between haploid and diploid of 8.6%.  Only nine genes showed 22 

no statistical change in fitness, indicating that a subset of LOF mutations can in fact be dominant 23 



16 

 

(WSC3, TIM12, IPT1, MMS22, UFO1, NDL1, PBS2, YGR051C and YLR280C). We also found 1 

that the distribution of mutations is not uniform along the coding sequence. Disruptive mutations 2 

(high impact mutations) are enriched near the start codon (Wilcoxon rank-sum test, p<10-3 
3 

Figure S3A), indicating a preference for early truncations, which are most likely to cause severe 4 

LOF.  5 

Mutational pathways are constrained  6 

Recurrence-based models, which assume oncogenes are recurrently mutated in several 7 

tumor samples, are still one of the most widely used approaches to identify putative driver genes 8 

in cancer [50-52]. The repeatability of adaptive trajectories has also been extensively observed in 9 

the microbial research community and has led to the discovery of drivers of adaptation such as 10 

SUL1, HXT6/7, and RIM15 in S. cerevisiae and rpoS in Escherichia coli [11,19,20,42,53]. Of the 11 

1,088 genes mutated in the catalog we compiled, 154 genes were found with a mutation in more 12 

than one sample, and among them 19 genes were found mutated more than five times 13 

independently (Figure 3A). We detected that recurrently mutated genes are highly enriched in 14 

mutations categorized as high impact (Fisher exact test, p<10-16) (Figure 3B) and are longer than 15 

genes with only one hit (Wilcoxon rank-sum test, p<10-16) (Figure S3B).  In order to detect true 16 

adaptive mutations and discard false-positives, several studies have developed tools to correct for 17 

gene length [5]; in our study we decided instead to attempt to infer the functional impact of 18 

mutations on cellular fitness using our screen results. 19 

Prediction of evolutionary response to strong selection 20 

Despite the presence of more than one hundred recurrent mutations, a large number of 21 

genes are mutated in only single populations.  Since the number of Evolve and Resequence 22 
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experiments is currently still relatively small, akin to a non-saturating genetic screen, adaptive 1 

mutations are likely to be found in the class of singletons and would be missed by a recurrence 2 

method.  As an alternative strategy toward specifically identifying adaptive mutations, we 3 

compared the mutations found in the evolution experiments with known beneficial mutations 4 

identified by our genomic screen.  5 

From the functional screen described above, we detected 506 beneficial mutations 6 

targeting 458 genes; among them, 86 genes were found with a hit in our compiled mutation 7 

catalog, 27 in their corresponding conditions and the rest in the other conditions (YPD and 8 

nitrogen-limited). We also detected 21 recurrently mutated genes present in the list of beneficial 9 

mutations (Table S5). From the mutational catalog, 41 of 70 recurrent mutations were not 10 

associated with beneficial fitness in matched conditions in our functional screen. A third of them 11 

are not present in the mutant collections; another third were selected during experimental 12 

evolution performed in more than one condition and might not represent true convergent 13 

adaptation; and eight of them have a fitness ranging from 3 to 9%, below our stringent threshold 14 

for significance (PDE2, LCB3, SSK1, DAL81, RAS2, MTH1, IRA1 and RGT1). The remaining 15 

five genes were recurrently mutated, but had no obvious benefit in their given conditions 16 

(VPS25, MNN4, FRE5 and GSH1 in glucose and PHO84 in phosphate). One example, MNN4 has 17 

been found mutated in two independent populations grown in glucose limitation; however we 18 

measured no fitness benefit in our functional screen and no fitness benefit was reported in a 19 

competitive assay using evolved clones [24]. These five genes could be recurrently mutated by 20 

chance, or fitness increases caused by these mutations are not mimicked by gene amplification or 21 

deletion collections, which may be the case for partial loss of function mutations or gain of 22 

function mutations that create a new activity.  Alternatively, these mutations may only have a 23 
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benefit in a specific genetic background. This data show that convergent evolution cannot be 1 

used as the only parameter to predict evolutionary outcomes and more comprehensive and 2 

unbiased detection of adaptive mutations requires a more direct method such as functional 3 

screening. 4 

50% of the mutations accumulated during experimental evolution are 5 

adaptive 6 

Next we wanted to determine how many adaptive mutations were carried by each 7 

sequenced population and clone, using the frequency of recurrence combined with data from the 8 

functional screen. We determined that 91% of the samples (clones and populations) carried at 9 

least one predicted driver mutation. Of these samples, each contained an average of 5.2 10 

confirmed known beneficial mutations: 7.6 per population and 2 per clone, with an average of 11 

0.47 adaptive mutations per total mutation (Figure 4A – Table S6). No difference was detected 12 

between conditions (Figure 4B – Table S6). Three populations with no predicted beneficial 13 

mutations were cultivated in nitrogen-limiting conditions.  However, these strains have been 14 

shown to carry Copy Number Variants (CNVs) [12], and we did not include nitrogen limitations 15 

in our functional screen. We also detected 24 mutations from the experimental evolution studies 16 

in genes that are associated with deleterious mutations based on our functional screen performed 17 

in the same conditions.  However, none of the mutations were predicted to have a high impact on 18 

the function of the gene, and so they might instead be neutral or near-neutral passenger 19 

mutations. Thus, combining functional screening of mutations and whole genome sequencing of 20 

populations and clones in this way, we are able to identify both drivers of adaptation and also 21 

unexplored fitness peaks. We conclude that evolution is partly predictable based on the 22 
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repeatability of adaptive trajectories in independent evolution experiments and reflects at least in 1 

part the underlying fitness distribution of possible mutations. 2 

The set of beneficial mutations reveals potential drivers of adaptation 3 

The analysis above defines the subset of adaptive mutations actually utilized by 4 

experimental evolution. However, the screen for beneficial mutations identified a large 5 

mutational reservoir with many additional accessible evolutionary paths [54]. To determine what 6 

differentiates the actual mutation spectrum from the potential mutation pool, we excluded the 7 

mutations that had already been identified in experimental evolution, and found 369 potential 8 

adaptive mutations that were unobserved in the existing evolved populations. Given the 9 

population size of the cultures used for experimental evolution (105 to 1010 cells depending on 10 

the experimental set-up), the number of generations grown (50 to 1000 generations), and the size 11 

of the yeast genome (~12 megabases), every base mutation must have been explored many times 12 

in the ensemble of experiments.   13 

We used our functional screen to determine whether the mutations actually selected for 14 

during experimental evolution differed from the potential adaptive mutations that were never 15 

recovered. We detected a statistical difference between the fitness of the beneficial mutations 16 

observed in versus absent from the experimental evolution studies in glucose-limitation 17 

(Wilcoxon rank-sum test, p=0.02) but not in phosphate-limitations (Wilcoxon rank-sum test, 18 

p=0.6) or sulfate-limitations, which are dominated by the fitness increase caused by SUL1 19 

amplification (Wilcoxon rank-sum test, p= 0.06 and p=0.34 in the absence of SUL1) (Figure 20 

5A).  The small number of mutations detected in populations evolved under sulfate and 21 

phosphate-limitations (n=94 and 54) may have limited our ability to detect a similar fitness 22 
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differential as observed in glucose-limitation (n=224).  This would suggest that the observed 1 

mutation spectrum is driven by the fitness of potential beneficial mutations. The observed 2 

mutation spectrum could also be biased away from the highest fitness mutations by differences in 3 

mutation rate, as previously proposed [10]. Likely, the lack of mutations in these genes may be 4 

the result of a combination of all of these factors, including random chance, epistatic interactions 5 

between mutations, and/or a reflection that the pool experiment does not adequately recapitulate 6 

the fitness of the de novo mutations. Clonal interference is also likely to play a large role.  7 

Consistent with previous findings, SUL1 dominates in the functional screen and in the mutational 8 

spectrum (Figure 5B), but other highly beneficial mutations (>20% fitness increase) such as 9 

mutations in MAC1 and PHO3, two genes coding proteins implicated in copper and phosphate-10 

sulfate metabolism, respectively, are also potential drivers but are never recovered (Figure 5B) 11 

[10,55]. Conversely, in glucose limitation, many beneficial mutations of similar fitness are 12 

possible, and so more variety in outcomes and broader sampling of the mutational reservoir is 13 

observed. 14 

Mutational spectrum in the absence of the main adaptive mutation 15 

To investigate the discrepancy we observed between the single-step fitness landscape and 16 

the observed mutational spectrum, and to test the predictability of experimental evolution, we 17 

wanted to test if we could detect unobserved adaptive mutations by inhibiting the selection of the 18 

main driver of adaptation. We have shown in previous work that SUL1 amplification dominates 19 

the mutational spectrum [42,43] and is the mutation with the highest fitness in our screen 20 

(Figure 5B). Additional adaptive mutations might be undetectable in sulfate-limited conditions 21 

due to the presence of such a strong fitness peak. We hypothesized that by eliminating the 22 

selection of the SUL1 amplification, a variety of smaller effect mutations will be selected, an 23 
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outcome more similar to the pattern observed in glucose-limitation. To explore the mutational 1 

landscape in the absence of the main adaptive mutation, we screened two evolved populations in 2 

which no SUL1 amplification was detected by qPCR (Figure 6A) and aCGH (data not shown) 3 

even after 200 generations of cultivation in sulfate-limited conditions. The fitness of the clones 4 

and populations without SUL1 amplification (~30%) (Figure 6B) are on the lower end of the 5 

fitness range of previously studied evolved clones with SUL1 locus amplifications (37% to 53%) 6 

[43]. To establish which mutations were responsible for this phenotype, we performed whole 7 

genome sequencing and called SNPs and INDELs of the clones and the populations isolated at 8 

generation 200. One nonsense mutation was detected in the previously identified adaptive gene 9 

SGF73 for one of the clones (Table S4). Two independent non-synonymous mutations (N263H 10 

and N250K) in the coding-region of SUL1 were also detected in both populations. Wild type 11 

strains containing those mutations were created and we detected a fitness increase of 23.1% 12 

(±2.3) for the strains carrying N250K and 17.7% (±1.22) for the strain carrying N263H. In 13 

addition, for the second clone, we detected a 5.1 kb deletion on chromosome IV (4.8kb, 587839-14 

592999) affecting four genes (FMP16, PAA1, IPT1 and SNF11) (Figure 6C). From our 15 

functional screens, we found that deletions of IPT1 and SNF11 are beneficial in glucose and 16 

sulfate-limited conditions (10 to 20% fitness increase) but mutations in these genes were never 17 

detected in any of our previous evolved populations (Figure 5B). Since these genes are adjacent 18 

on the chromosome, we suspected that one of these genes may be a false positive, resulting from 19 

a known artifact called the neighboring gene effect [56]. To decipher which deletion drives the 20 

increased fitness, we used complementation screens using centromeric plasmids, and found that 21 

the deletion of either gene drives the fitness increase in the evolved strain (Figure 6D). SNF11 is 22 

a subunit of the SWI/SNF chromatin remodeling complex, which is known to act as a tumor 23 
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suppressor in humans [57], while IPT1 is implicated in the metabolism of membrane 1 

phospholipids and nutrient intake [58]. Thus, small-effect mutations detected in the functional 2 

screen are relevant although they may not be detected at first in experimental evolution. We 3 

predict that additional evolution experiments that remove the SUL1 amplification path would 4 

eventually explore even more alternative accessible evolutionary routes. 5 

  6 
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DISCUSSION 1 

Our work addresses a central topic in evolutionary biology, the relationship between 2 

genotype and fitness and how evolution is constrained despite the presence of alternative 3 

accessible paths.  For this purpose we generated both a nearly complete set of possible beneficial 4 

mutations and a catalog of mutations actually observed during long term experimental evolution. 5 

Using those two datasets, we were able for the first time to compare potential and actual 6 

beneficial mutations and begin to understand why some mutations are selected or not. 7 

Patterns and reproducibility of evolution 8 

By compiling a catalog of >1,000 mutations identified in 109 independent evolution 9 

experiments from this study and others (Table S4), we were able to ask a variety of questions 10 

about the reproducibility of adaptation, and the features of beneficial mutations over multiple 11 

conditions and ploidy states. We detected an excess of loss of function mutations in haploids, as 12 

previously shown by Kvitek and Sherlock [11]. Moreover we estimated that mutations predicted 13 

to modify gene expression level are statistically enriched in diploid compared to the number in 14 

haploids. Mutation rate has been shown to be similar in diploids and in haploids [59,60], 15 

suggesting differential selection or a mechanism based on genetic context and not on the 16 

mutation rate. Several studies have also shown that mutations have a greater effect on the fitness 17 

of haploids than heterozygous diploids [61], which we were also able to show, and that the 18 

frequency of fixation is higher in diploids [40]. Mutations affecting cis-regulating regions have 19 

often been described as co-dominant while most coding region mutations will be recessive [47]. 20 

Large CNVs have also been seen to be enriched in diploid backgrounds versus haploids [42], 21 
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suggesting that a diploid context for aneuploidy and CNVs might buffer the detrimental cellular 1 

effect seen in haploids [62,63]. 2 

In agreement with previous reports [11,17,19,42,53], we detected that selection of 3 

mutations under laboratory controlled conditions results in a non-uniformity of the distribution of 4 

mutations across the genome, as we detected over one hundred recurrently mutated genes 5 

(Figure 3A). We detected that the same beneficial phenotype can arise through identical 6 

genomic changes (recurrently mutated genes) [10,17] and also through different, apparently 7 

unrelated mechanisms as 85% of the genes were only hit once by a mutation.  As the recurrence 8 

based method offers an unsatisfactory prediction of the impact of mutations on cellular fitness 9 

[64], functional screening of all mutations was still required to discriminate neutral and 10 

passengers mutations from causative mutations. 11 

Experimentally surveyed set of beneficial mutations  12 

To solve this problem, we built a nearly complete set of beneficial mutations based on 13 

both gain and loss of function of nearly every gene in the yeast genome. This data set was 14 

generated by competing libraries of systematically created mutant strains en masse and then by 15 

analyzing the results by barcode sequencing.  The functional screen revealed that most single 16 

gene deletions or amplifications did not affect the fitness of the cells, demonstrating the 17 

robustness of cellular fitness to subtle genomic changes (Figure 2). We also detected 506 18 

mutants with a fitness increase. A large proportion of the beneficial mutations originated from 19 

the overexpression collection, revealing that gain-of function mutations positively affect cellular 20 

fitness in this background. These data illustrate the large number of accessible adaptive 21 

mutations, and allow us to compare this list of potential beneficial mutation with mutations 22 
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selected during the course of laboratory evolution experiment, in order to ask which mutations 1 

are selected and why. 2 

Evolution is constrained by the fitness of adaptive mutation 3 

By combining the beneficial mutations detected in the functional screening  and the 4 

mutational spectrum of evolved clones and populations, we were able to determine that 50% of 5 

the mutations detected in evolving populations are beneficial. As would be expected, this number 6 

is higher than previous estimates of the null distribution of mutation fitness using mutation 7 

accumulation lines performed in yeast (6% to 13% of all mutations) [65]. We also found that 8 

some mutations dominate the mutational spectrum by dominating the fitness of beneficial 9 

mutation. For instance, a particular large effect mutation is nearly always observed in sulfate-10 

limited conditions, while a diversity of smaller-effect beneficial mutations was detected in both 11 

glucose and phosphate-limitations. 12 

The comparison also revealed a large number of potential beneficial mutations that have 13 

never been observed in any Evolve and Resequence studies so far (Figure 5B). We wanted to 14 

see if those mutations corresponded to inaccessible evolutionary paths or if they could be 15 

selected in some specific conditions.  We decided to focus on sulfate-limitation, as one primary 16 

evolutionary path is utilized in this condition (SUL1 amplification). We looked in evolved strains 17 

without this mutation, and found that alternative routes could then be explored. The fitness of the 18 

evolved population linked to the deletion of two adjacent genes (IPT1 and SNF11).  19 

Remaining open questions 20 
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While producing for the first time at this scale a single-step fitness landscape of single 1 

gene mutations in the yeast genome, the functional screen using both amplification and deletion 2 

collections has several limitations. The collections available in yeast are based on single gene 3 

copy number changes and do not allow study of single point mutations, and protein-coding 4 

mutations that are not mimicked by dosage changes, non-genic functional elements or 5 

combinations of mutations.  To explore the importance of non-genic regions and small genes not 6 

present in the yeast collections, billions of individual and combined mutations need to be 7 

generated in a comprehensive way, similar to deep mutational scanning of proteins [66], the 8 

Million mutation project [67] or by using newly created collection such as the tRNA deletions 9 

collection [68] or large telomeric amplicons [Sunshine, submitted, see Supplementary file].  A 10 

major challenge now is to identify the combination of genetic variants that modulate the activity 11 

of specific pathways.  Previous studies in simpler microbial and viral systems have provided 12 

evidence for both antagonistic and synergistic epistasis between beneficial mutations [39,69-72]. 13 

Synthetic genetic arrays and other similar approaches using the S. cerevisiae deletion collection 14 

have been used to characterize negative and positive epistatic relationships, and a nearly 15 

complete yeast genetic interaction network has been generated using double mutants grown 16 

under a single lab condition, showing that genes within the same pathway show similar 17 

interaction patterns [73,74]. Further studies with these resources would also allow us to move 18 

beyond single gene effects and begin to understand how multiple genes in CNVs and 19 

combinations of mutations shape the fitness landscape.   By expanding and developing these 20 

techniques, the increase of studies combining long term experimental evolution and whole 21 

genome sequencing will likely reveal additional subtle mutational signatures and support the 22 

causal link between mutations and phenotypes such as the impact of synonymous mutations on 23 
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gene splicing as has been recently shown in oncogenes [75], and the impact of mutations on cis-1 

regulation in the genome [47,76].  2 

 3 

Conclusions 4 

Our analysis makes clear that the identification of adaptive mutations requires accurate 5 

functional screening integrated with variant discovery to allow the confirmation of frequently 6 

observed mutations but also the discovery of alternative adaptive mutations. Our results predict 7 

that the increase of evolved population sequencing data combined with unbiased and 8 

comprehensive functional information to broadly query the genome on a large variety of 9 

conditions and genetic backgrounds will result in a more complete characterization of the 10 

mutational landscape of adaptation.   11 
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METHODS  1 

Strains and media used in this study. The MoBY-ORF collection in Escherichia coli 2 

was obtained from Open Biosystems and stored at -80C as individual strains in 96-well plates. 3 

The plates were thawed and robotically replicated onto LB-Lennox (Tryptone 10g, Yeast extract 4 

5g, NaCl 5g) agar plates containing 5µg/ml of tetracycline, 12.5µg/ml of chloramphenicol and 5 

100µg/ml of kanamycin and grown at 37°C for 14 hours. Colonies were harvested by addition of 6 

5ml LB-Lennox to each plate and subsequently pooled. 50% Glycerol was added and aliquots of 7 

1ml, containing 2x109 cells/ml, were frozen at -80C. Plasmid DNA was prepared from the E. coli 8 

pool and then transformed into S. cerevisiae S288C derivative strain DBY10150 (ura3-52/ura3-9 

52) using a protocol adapted from Gietz and Woods (2005). The yeast transformants were 10 

selected on –URA and 200µg/ml G418 plates. 88,756 transformants were pooled together, giving 11 

an average library coverage of ~20x. The MOBY-ORF v2.0 collection was obtained from the 12 

Boone lab and crossed for 3 hours with YMD1797 (MATα, leu2∆1). Clones were selected on 13 

MSG/B and G418 (200µg/ml) twice and pooled together. The MATa/MATα Magic Marker 14 

collection was obtained already pooled from the Spencer lab. The MATa Magic Marker library 15 

was obtained frozen from the Caudy lab; the strains were selected on -LYS and -MET and 16 

pooled together. The barcoder collection was obtained frozen from the Nislow lab. The plates 17 

were thawed at room temperature, replicated onto YPD and G418 (200µg/ml) and crossed with 18 

FY5 (MATα, prototrophic strain), the strains were then selected on MSG/B+G418 (200µg/ml) 19 

twice and pooled together. A list of strains used in this study can be found in Table S1.  20 

Continuous culture in chemostats and pool competition experiments. Nutrient 21 

limited media (sulfate-limited, glucose-limited and phosphate-limited) as described in [19,42,77] 22 



29 

 

were complemented with uracil and histidine (20mg/L) for the Magic Marker pools. The 200ml 1 

chemostat vessels were inoculated with 1ml of each pool (~2x107 cells). Cultures were grown at 2 

a dilution rate of 0.17±0.01 volumes/hour at 30°C. We grew the five pools in chemostats for 30 3 

hours in batch and then switched to continuous culture. The cultures reached steady state after 4 

~10 generations and were maintained for 20 generations in the three conditions (Figure S1).  A 5 

sample taken just after we turned the pump on, was designated Generation 0 (G0), then samples 6 

were harvested every 3 generations on average. Samples for cell count and DNA extraction were 7 

passively collected twice daily. Each pooled competition was performed in duplicate.  8 

Genomic DNA preparation, Plasmid extraction, qPCR. Genomic DNA was 9 

extracted from dry, frozen cell pellets using the Smash-and-Grab method [78]. Plasmids from the 10 

MoBY collections were extracted with a Qiagen miniprep protocol (QIAprep Spin mini prep kit 11 

kit; Qiagen, Hilden, Germany) using the following modification:  0.350mg of glass beads were 12 

added to a cell pellet with 250µl of buffer P1 and vortexed for 5min.  Then 250µl of buffer P2 13 

was added to the mix of cells and beads and 350µl of buffer N3 was added to the solution, before 14 

centrifuging for 10 min. The supernatant was then applied to the Qiagen column following the 15 

recommendation of the Qiagen miniprep kit.  Plasmid DNA is then eluted in 50µl of sterile 16 

water. Smash-and-Grab Genomic DNA was extracted from dry pellet of cells using Smash-and-17 

Grab method and used for barcode verification of single strains using PCR amplification and 18 

Sanger sequencing as previously described [43].  For each sample, the plasmid copy number was 19 

determined using the copy number of KanMX relative to the copy number of DNF2, a gene 20 

located on chromosome 4 and absent from the two MoBY collections (see Figure S5). The 21 

primers used are included in Table S8. Microarray, whole genome sequencing, SNP calling and 22 

qPCR analysis were performed as previously described [43]. Microarray data from this article 23 
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have been deposited in the Gene expression Omnibus repository under accession GSE58497 1 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=sjgtsgwmdhajdud&acc=GSE58497). 2 

The fastq file for each library is available from NCBI Short Read Archive with the accession 3 

number PRJNA248591 and BioProject accession PRJNA249086. 4 

Barseq experiments and fitness measurement. Amplifications of the barcodes were 5 

performed using a modified protocol [25]. Uptag barcodes were amplified using primers 6 

containing the sequence of the common barcode primers (bold), a 6-mer tag for Illumina 7 

multiplexing (in italics) and the sequence required for attachment to the Illumina flowcell 8 

(underlined) (Table S8). PCR amplifications were performed in 100µl volume, using Roche 9 

FastStart DNA polymerase with the following conditions; 94°C/3min, 25 cycles of 94°C/30sec, 10 

55°C/30sec, 72°C/30sec, followed by 72°C/3min. PCR products were then purified using the 11 

Qiagen MinElute PCR Purification kit (cat. No. 28004), quantified using a Qubit fluorometer and 12 

then adjusted to a concentration of 10µg/ml. Equal volumes of normalized DNA were then 13 

pooled and gel purified from 6% polyacrylamide TBE gels (Invitrogen) using a soak and crush 14 

method followed by purification and concentration using Qiagen Qiaquick PCR purification. 15 

After quantification using a Qubit fluorimeter, libraries were sequenced using the standard 16 

Illumina protocol as multiplexed single read 36-base cycles on several lanes on an Illumina 17 

Genome Analyser IIx (GAII). We sequenced thirty multiplexed libraries (UPTAGS only) on 18 

several lanes of an Illumina GAII and we obtained on average 25,664,072 million reads that 19 

perfectly matched the molecular barcodes per library (Table S9). The fastq file for each library is 20 

available from the NCBI Short Read Archive with the accession number PRJNA248591 and 21 

BioProject accession PRJNA249086 and are listed in Table S10. The 6-mer multiplexing tags 22 

were reassigned to a particular sample using a custom Perl script (Supplementary File 1). Then, 23 
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each barcode was reassigned to a gene using a standard binary search program (program in C, 1 

Supplementary File 2).  Only reads that matched perfectly to the reannotated yeast deletion 2 

collection [25] or MoBY-ORF collection [32] were used. For the barcoder collection, the 3 

barcodes were recovered using a compiled list of all barcodes previously published. We were 4 

able to recover 1885 barcodes, where1624 barcodes were recovered from the barcode list of the 5 

yeast deletion collection and 260 barcodes from the Yeast Barcoders collection [31,35]. Multiple 6 

genes with the same barcodes were discarded. The strains with less than 20 counts across the 7 

different samples were discarded. The numbers of strains identified for the five collections in the 8 

three conditions are summarized in Table S9.  To avoid division by 0 errors, we added 10 to 9 

each barcode count before normalizing to the total number of reads for each sample. To quantify 10 

the relative fitness of each strain during growth in the various conditions, we restricted our 11 

analysis to when the samples reached ‘steady-state’ phase defined as generations 6 through 20, 12 

and used generation 0 as t0. The linear regression of the log2 ratios between generation 6 and 20 13 

to generation 0 was used to calculate the fitness of each strain and the two replicates 14 

measurements were then averaged. The source code is provided in the supplementary materials 15 

(R script, Supplementary File 3).  16 

Validation of the fitness measurements and pairwise competition. To ensure that 17 

the pooled fitness measurements accurately reflect the fitness of each strain, we measured the 18 

relative fitness of 51 strains from the deletion and plasmid collections that were detrimental, 19 

neutral or beneficial, by individual competition against a control strain marked with a fluorescent 20 

protein (eGFP) in the three conditions used in the pooled experiment. Fitness measurements of 21 

individual clones were performed as previously described [43] using FY strains where the HO 22 

locus had been replaced with eGFP (MATa: YMD1214 and MATa/MATα: YMD2196) (Figure 23 
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S4, Table S7).  The fitnesses are similar in both assays and we observed a strong positive 1 

correlation (R2=0.83) between the large pool screen and the individual fitness measurements 2 

(Figure S4 and Table S7). A second concern is that use of the yeast collections to determine the 3 

association of fitness changes could be compromised by mutations or copy number changes 4 

preexisting elsewhere in the genomes of the pooled strains. To limit this known artifact, most of 5 

the barcoded pools used for these experiments were created either by fresh transformation (in the 6 

case of plasmid collections) or from a fresh cross of the commercially available collection stocks 7 

with a wild-type strain to dilute any possible passenger mutations (See above in Materials and 8 

Methods).  To avoid de novo mutations achieving high frequency and skewing our fitness 9 

measurements, we limited our pooled and pairwise competition to 20-25 generations. 10 

To determine the number of mutations of our validation panel, we screened these fifty-one 11 

clones for what is known to be the most common secondary mutation detected in the deletion 12 

collection, mutations in the gene WHI2, which is involved in the regulation of cell proliferation 13 

[25,74].  We confirmed the lack of mutations in the WHI2 gene in the individual strains by 14 

Sanger sequencing (Table S7). We also detected no copy number changes at the population level 15 

using microarray analysis of the last sample of the competition of the low copy plasmid 16 

collection, though this approach would only detect CNVs that achieved at least ~10% population 17 

frequency (data not shown). 18 

  19 
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FIGURE LEGENDS 1 

Figure 1. Experimental design for genome-wide pooled competition experiment. The 2 

proportion of each strain was measured every 3 to 4 generations during a pooled competition 3 

assay, in which all strains from one collection were mixed together in the same ratio and grown 4 

at steady state for 20 generations (A). The frequency of the corresponding barcode at each time 5 

point was measured using the barseq method (B), and the fitness of each strain computed (C). 6 

Figure 2. Distribution of the fitness effects of single gene amplification and deletion. 7 

Distribution of the fitness measurements of the deletion collections and the plasmid collections 8 

in three conditions: glucose-limited, sulfate-limited and phosphate-limited chemostats. The 9 

fitness of each strain is shown as small line or as a distribution for the control collection (in 10 

grey). The thick black line represents the mean. Dashed grey lines indicate the cut-off of ±10% 11 

measured using control pooled collection. 12 

Figure 3. Recurrently mutated genes reveal how evolution is constrained. A- Repeatability 13 

of adaptation and parallelism at the gene level. Genes classified by number of mutations detected 14 

during Evolve and Resequence studies. 154 genes were found to be hit by more than one 15 

mutation. 48 recurrent genes were found mutated in more than one conditions (small panel). B- 16 

Enrichment of high impact mutations in recurrently mutated genes when compared to genes 17 

found with only one mutation. Error bars are 95% CI. 18 

Figure 4. Driver mutations. A- Boxplot representing the number of driver mutations and the 19 

ratio of driver to total mutations detected in evolved clones and populations. The significance of 20 

the difference between clones and populations was estimated using Wilcoxon-ranked test. B- 21 
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The ratio of driver mutations to mutation total is not conditions specific (p=0.28; 0.70; 0.36; 0.78 1 

and 0.36 for glucose-limited; sulfate-limited; YPD; other and phosphate-limited respectively). 2 

Figure 5. Alternative accessible evolutionary paths.  A- The fitness of beneficial mutations 3 

found (F) in Evolve and Resequence studies is statistically significantly higher than the fitness of 4 

beneficial mutations not found (NF) in glucose-limitation but not in phosphate-limitation and 5 

sulfate-limitation. The significance of the difference between the two boxplots for each condition 6 

was estimated using a Wilcoxon-ranked test.  B- Each point represents the fitness of a strain and 7 

the proportion of Evolve and Resequence samples with the corresponding gene mutated. SUL1 8 

dominates the fitness and mutational spectrum. Several mutations have a high fitness but have 9 

never been detected in Evolve and Resequence studies and might correspond to potential drivers 10 

of adaptation. 11 

Figure 6. New beneficial mutations are selected in absence of the main driver. A-The copy 12 

number of SUL1 was assessed using qPCR analysis on samples taken from two independent 13 

experiments in which SUL1 did not amplify (green and pink), compared with previously 14 

published data from  wild type strains (in grey) (Payen et al. 2014). B- Fitness coefficient of 15 

population samples at generation 5, 50 and 200 and the fitness of two clones isolated at 16 

generation 200. C- Small deletion (~5kb) detected in population from experiment 2 on 17 

chromosome IV encompassing four genes (between brackets), polyT sequences are present at the 18 

breakpoints, the color of the boxes represent the orientation of the genes (yellow: gene on the 19 

Watson strand, grey: genes on the Crick strand). D- Fitness coefficient of the two deletion strains 20 

ipt1∆ and snf11∆, and both deletion strains complemented with IPT1 or SNF11 on a low copy 21 

plasmid in sulfate limited condition. 22 



38 

 

SUPPLEMENTARY FILES 1 

Figure S1. Steady-state in continuous cultures is reached at generation 6. Cell density over 2 

time for each pool grown in the chemostat in glucose-limited, sulfate-limited and phosphate-3 

limited for 20 generations. 4 

Figure S2. Relative frequency over time of three strains from four collections.  Each box, 5 

represents the relative frequency of one strain over time, plotted as the log2 ratio of the frequency 6 

at generation x relative to its frequency at generation = 0 over the ~20 generations of steady-state 7 

competition.  Each line, colored blue and red, represents the linear regression used to calculate 8 

the relative fitness between generation 6 and 20.  9 

Figure S3. Distribution of high impact mutations.  A- Enrichment of disruptive mutations 10 

(high impact) near the beginning of the gene. The significance of the difference between the 11 

three boxplots representing the distribution of the mutations within genes was estimated using a 12 

Wilcoxon rank-sum test.  B- Distribution of the gene size between genes found recurrently 13 

mutated and genes found with only one mutation. The significance of the difference between the 14 

two boxplots representing the distribution of the sizes of genes in the two sets was estimated 15 

using a Wilcoxon rank-sum test.  16 

Figure S4. Fitnesses of 51 mutant strains measured in pool by barseq and in pairwise 17 

competitive assays. Because the fitness measured in the pooled experiment corresponds to the 18 

fitness relative to the population's mean fitness, we compared the pooled fitness data of 51 19 

strains to individual fitness assays and found a strong positive correlation. Pearson’s correlation 20 

coefficient R²= 0.83. G: Glucose-limited, S: Sulfate-limited and P: Phosphate-limited conditions. 21 
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Figure S5.  Fluctuations of the copy number of the plasmids monitored by qPCR on 1 

population samples over time A-. Each color corresponds to a condition as described in panel 2 

B. B- Average of the plasmid copy number for both the high copy and the low copy plasmid 3 

collections grown for 20 generations in glucose-limited, sulfate-limited and phosphate-limited 4 

conditions. 5 

Table S1: Strains and strain collections used in this study. 6 

Table S2: Fitness measurements from mutant collection competitions. 7 

Table S3: Fitness measurements from barcoder collection competitions. 8 

Table S4: Identities, frequencies, and predicted effects of mutations discovered in 9 

experimental evolution studies. 10 

Table S5: Beneficial mutations from the mutant collection competitions. 11 

Table S6: Beneficial mutations in evolved samples. 12 

Table S7: Fitness measurements from individual competition experiments vs pooled 13 

experiments. 14 

Table S8: Primers used in this study. 15 

Table S9: Barcode sequences used in this study. 16 

Table S10: Summary statistics for barcode sequencing experiments. 17 

Supplementary File 1: Perl script for demultiplexing sequencing files. 18 

Supplementary File 2: C script used for barcode assignment. 19 
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Supplementary File 3: R script used for linear regression for fitness calculations. 1 

  2 
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Table 1: Mutational 1 

catalog subdivided by 2 

conditions ploidy and 3 

sample   4 

  Number of mutations This study 

Conditions 

YPD 720 NA 
Glucose 224 23 
Sulfate 97 76 
Phosphate 54 51 
Other 72 NA 

    

Ploidy 
Haploid 1017 75 
diploid 150 75 

    

Sample 
Clones 305 75 
Population 862 75 
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Class All diploid haploid pvalue* qvalues SNPeff 

Stop gained 123 5 118 0.003 0.005 High 

Start lost 8 1 7 0.97 0.591 High 

Stop lost 2 0 2 0.59 0.469 High 

Frameshift 6 0 6 0.74 0.496 High 

Non-synonymous 817 97 720 0.15 0.201 Moderate 
Codon 
deletion/insertion 

3 0 3 0.51 
0.469 

Moderate 

Synonymous 142 15 127 0.46 0.469 Low 

5'upstream 13 7 6 0.0001 0.002 Modifier 

Intron 5 1 4 0.63 0.469 Modifier 

Intergenic 48 24 24 0.0001 0.002 Modifier 

Sum 1167 150 1017 2.5e-315 1.68e-314   

Table 2: Comparison of the mutational signature in haploid and diploid strains 1 

* Chi-square and Fisher's exact test pvalues 2 
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