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Abstract

As costs of next-generation sequencing decrease, identification of genetic
variants has far outpaced our ability to understand their functional conse-
quences. This lack of understanding is a central challenge to a key promise
of pharmacogenomics: using genetic information to guide drug selection
and dosing. Recently developed multiplexed assays of variant effect en-
able experimental measurement of the function of thousands of variants
simultaneously. Here, we describe multiplexed assays that have been per-
formed on nearly 25,000 variants in eight key pharmacogenes (ADRB2,
CYP2C9, CYP2C19,NUDT15, SLCO1B1, TMPT, VKORC1, and the LDLR
promoter), discuss advances in experimental design, and explore key chal-
lenges that must be overcome to maximize the utility of multiplexed func-
tional data.

531

A
nn

u.
 R

ev
. P

ha
rm

ac
ol

. T
ox

ic
ol

. 2
02

2.
62

:5
31

-5
50

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

W
as

hi
ng

to
n 

on
 0

6/
08

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

mailto:dfowler@uw.edu
mailto:maitreya@uw.edu
https://doi.org/10.1146/annurev-pharmtox-032221-085807
https://www.annualreviews.org/doi/full/10.1146/annurev-pharmtox-032221-085807


PGx:
pharmacogenomics,
the study of genetic
variation contributing
to variable drug
response

VDR: variable drug
response

PharmGKB:
Pharmacogenomics
Knowledgebase, a
curated collection of
information on
clinically actionable
gene-drug interactions

CPIC: Clinical
Pharmacogenetics
Implementation
Consortium, a group
that provides clinical
practice guidelines
based on gene-drug
interactions

INTRODUCTION

Pharmacogenomics and Variable Drug Responses

Pharmacogenomics (PGx) is the study of genetic variation that contributes to variable drug re-
sponses (VDRs) (1). Approximately 25–50% of patients experience VDRs that lead to toxicity
or change the amount of drug required to reach therapeutic concentrations (2–4). VDRs arise
from pharmacokinetics of absorption, distribution, metabolism, and excretion (ADME) or phar-
macodynamics of drug targets; therefore, PGx focuses on genetic variation in drug-metabolizing
enzymes, transporters, targets, and interacting factors (4).

Genetic variation accounts for 20–40% of VDRs (5, 6), and the prevalence of observed phar-
macogene variants predicts that 80% of patients likely have at least one variant that could affect
drug response (7). Actionable pharmacogenes are ones for which variants can inform dosing or
the prescription of an alternate therapy (8). Therapeutic index, severity of toxicity, consequences
of underprescribing, and availability of alternate therapies are all considered when designating
a pharmacogene as actionable (9). Therefore, identifying a variant in an actionable pharmaco-
gene that predisposes to a VDR can inform clinical decisions over the course of a patient’s life.
To facilitate the application of genetic data to clinical action, groups such as the Pharmacoge-
nomics Knowledgebase (PharmGKB) and the Clinical Pharmacogenetics Implementation Con-
sortium (CPIC) provide evidence-based guidelines to interpret variant effects (10, 11). CPIC lists
440 gene-drug pairs where variants affect drug responses and has issued guidelines with recom-
mended prescribing actions for 23 pharmacogenes (https://cpicpgx.org/guidelines/).

Most variants with suggestions for clinical implementation have a minor allele frequency
(MAF) over 5% (12). However, multiple studies have illuminated the importance of rare (MAF
<1%) variants. Studies of pharmacogene variation in data from large-scale sequencing projects
predict that each individual harbors 40–120 pharmacogene variants, with 10–40% of this varia-
tion due to rare variants (6, 13).

Next-generation sequencing (NGS) improves upon platforms that only genotype candidate
variants by identifying novel rare variants. Although most individuals profiled by NGS harbor
common variants, the information gained from NGS is still beneficial (14): In some NGS studies
of pharmacogenes, 90% of rare variants were previously unreported (4).

With the increased speed and decreased cost of NGS, our ability to sequence genomes has
outstripped our ability to interpret the phenotypic consequences of genomic variants (2, 12, 15).
Variants of unknown function hamper the utility of clinical sequencing efforts because only de-
cisively interpreted variants can be used to guide clinical care (15). In order to implement NGS
data for clinical prevention of VDRs, experimental methods are necessary to assess variants of
unknown function.

Challenges with Current Approaches to Variant Functional Analysis

Many methods can be applied to analyze variant function, each with strengths and weaknesses.
Genome-wide association studies and pedigree analysis are gold standards, but the rarity of many
pharmacogene variants often precludes their use (16).Biochemical assays are used to determine the
activity of enzyme variants and drug transporters but are limited in scale (12, 15, 17). Functional
tests can be performed on variants expressed in laboratory systems and for point-of-care diagnos-
tics when enzymatic activity correlates with likelihood of VDR (9). However, these methods have
historically been performed reactively, after a variant is identified in an individual, increasing costs
and often not providing data rapidly enough to be useful for the original patient (8, 9).

Proactive methods to test all possible variants have the potential to lead to immediate imple-
mentation upon identification of a variant, decreasing the cost burden on patients and improving
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MAVE: multiplexed
assay of variant effect,
a functional genomics
method that uses
next-generation
sequencing to track
variants after selection
for altered function

VAMP-seq: variant
abundance by
massively parallel
sequencing, a MAVE
with selection based
on the abundance of a
tagged protein

outcomes (9). Computational tools can proactively predict the effect of sequence variation on
function (2), but recent studies have highlighted discordance with biochemical and clinical data
(1, 18).Thus, computational predictions are considered low evidence of pathogenicity in the clinic
(12, 15). In order to provide more data for clinical application, we need an approach that increases
both the scale and accuracy of proactive variant functionalization.

MAVEs

A multiplexed assay of variant effect (MAVE) assesses the function of hundreds to thousands of
variants simultaneously by using NGS to track each variant throughout a selection, producing a
functional score for every variant (19). MAVEs enable proactive measurement of the functional
effects of all possible single-nucleotide variants in a target gene, offering a general, scalable way
to resolve variants of uncertain significance (15).

Most MAVEs involve expressing a library of variants in a cell system so each cell expresses a
single variant. The cells are selected based on a phenotype conferred by the expressed gene, and
sequencing is used to determine the frequency of each variant in the selected populations (17).
Strategies for library creation, sequencing, and data analysis have recently been reviewed elsewhere
(15, 20, 21), so we focus here on the selection methods most relevant to pharmacogenes. MAVEs
have been completed on eight pharmacogenes: ADRB2, CYP2C9, CYP2C19, NUDT15, LDLR,
SLCO1B1,TPMT, andVKORC1.Most of theseMAVEs are deepmutational scans, which measure
the effect of amino acid substitutions on protein function (22). These pharmacogeneMAVEs used
five different selections: selection for steady-state protein abundance in cells; indirect selection for
activity using growth, fluorescent reporters, or RNA sequencing (RNA-seq); and direct selection
for enzyme activity using covalent substrates (Figure 1).

MAVEs for protein abundance are broadly applicable since they assess the ability of vari-
ants to fold and avoid degradation inside cells. To assess protein abundance, variant abundance
by massively parallel sequencing (VAMP-seq) measures target protein variants expressed in cells
as fusions to green fluorescent protein (Figure 1a). Cells with high fluorescence express high-
abundance variants that avoid degradation, whereas cells with low fluorescence express low-
abundance variants. Cells are sorted into bins according to their fluorescence, and each bin is
deeply sequenced to reveal the frequency of every variant at each level of fluorescence (23). Each
variant’s distribution across the bins is converted into an abundance score. VAMP-seq is particu-
larly useful for pharmacogenes, since many deficiencies have been attributed to decreased abun-
dance (18).

Selections for enzyme activity must be adapted to each pharmacogene because each selection
relies on the specific biochemistry of each enzyme. One way to indirectly measure enzyme activ-
ity is cell growth or survival (Figure 1b). Here, cells harbor a metabolic reporter for the target
enzyme’s activity or have a deletion of the genomic copies of the target enzyme. The variant-
expressing cells are grown in conditions that select against loss-of-function variants, and cells are
sequenced throughout growth to measure variant frequencies (16, 22). Since the target enzyme’s
activity is required for growth under selection,wild-type (WT)-like variants have higher frequency
in the final population, and loss-of-function variants have lower frequency. Many growth-based
MAVEs are conducted in the yeast Saccharomyces cerevisiae, where 2,696 human genes can func-
tionally complement the yeast ortholog (15, 24). Functional complementation assays in yeast have
already been developed for 179 human disease-associated genes (25). Beyond yeast, an explosion in
gene essentiality screening data has identified approximately 2,000 genes important for growth in
numerous human cell lines (26, 27), highlighting candidates for growth-based MAVEs in human
cells (28).
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click-seq: a MAVE
with selection based on
enzyme activity using a
covalent substrate and
click chemistry

MaveRegistry:
a catalog of published
and ongoing MAVEs

Figure 1 (Figure appears on preceding page)

Basic schematics of MAVEs. (a) To determine variant abundance, cells expressing a library of fluorescently
tagged variants are sorted by fluorescence, and the resultant bins are sequenced. (b) To indirectly determine
variant activity, cells expressing a library of variants are grown in conditions that select against loss-of-
function variants. A decrease in frequency in the final sequencing data signifies decreased activity. (c) Variant
activity can also be indirectly measured by treating cells expressing a library of variants with fluorescent
antibody against a cell surface protein reporter of enzyme activity. Cells are sorted by fluorescence, and the
resultant bins are sequenced. (d) Transcriptional reporters can be used to indirectly measure activity. Variants
in a protein with a transcriptional effector are introduced into cells with unique barcodes under an effector-
mediated binding site. For MAVES on promoters, the barcodes are placed directly under the control of
promoter variants. RNA-seq to detect barcodes is used to group variants by transcriptional activity. (e) To
directly measure variant activity, yeast cells expressing a library of variants are treated with a covalent
substrate, excess is washed away, and substrate bound to active enzyme is then attached to a fluorophore
using click chemistry. Cells are sorted by fluorescence, and the resultant bins are sequenced. Panel e adapted
from Reference 31. Abbreviations: MAVE, multiplexed assay of variant effect; NGS, next-generation
sequencing; RNA-seq, RNA sequencing; VAMP-seq, variant abundance by massively parallel sequencing.

Other indirect selection methods for enzyme activity involve additional types of reporters. For
fluorescent reporters, cells are engineered to express a cell-surface marker that is driven by the
enzyme activity of the target gene, which is then detected using a fluorescent antibody against the
marker (15, 29) (Figure 1c). Cells expressing the library of variants are sorted according to fluo-
rescence levels and sequenced to score every variant’s ability to drive the reporter. RNA-seq can
also be a reporter for enzyme activity when the downstream output of a pathway is transcriptional
activation. RNA barcodes are placed into transcribed regions regulated by binding motifs for the
relevant transcription factor and integrated into cells with the library of variants (16) (Figure 1d).
The RNA barcodes are sequenced to determine transcriptional activity associated with each vari-
ant. A similar design can be used to assess promoter or enhancer activity (30).

Finally, target enzyme activity can be directly selected using a covalent substrate (Figure 1e).
Cells expressing a library of the target enzyme are treated with a substrate that reacts covalently
with the enzyme. Unreacted substrate is washed away and click chemistry is used to attach a flu-
orophore to enzyme-bound substrate, hence this method is called click-seq (31). Cells are sorted
according to their fluorescence and sequenced to score every variant’s ability to react with the
covalent substrate.

EveryMAVE produces a set of scores related to variant function.These functional scores quan-
tify how each variant performs in the assay, typically relative to theWT protein. Functional scores
can be used to classify the molecular effect of variants (e.g., loss of function orWT-like). They can
also be compared to variants with known clinical effects to translate loss of molecular function into
impact on a clinical phenotype (23, 28). How functional scores translate into clinical phenotypes
is different for each MAVE and affected by a variety of factors ranging from data quality to how
well the functional assay correlates with the clinical phenotype. Thus, including as many known
pathogenic and benign variants as possible in each library is important (32).

MAVEs ON PHARMACOGENES

Recently, multiplexed functional data have emerged for a variety of genes, including a handful of
pharmacogenes.As ofMarch 2021,MAVEs have been performed on the coding sequences of phar-
macogenes ADRB2, CYP2C9, CYP2C19, NUDT15, SLCO1B1, TPMT, VKORC1, and the LDLR
promoter (Table 1). For each of these genes, we review the rationale for applying MAVEs, how
MAVEs were used, and what was learned.MAVEs are also in progress on the coding sequences of
CYP2D6,G6PD,HMGCR, LDLR, andMTHFR according to MaveRegistry.
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Table 1 MAVEs on pharmacogenes

Gene MAVE
Number of variants
(% of possible)a

Decreased function
(%)b Reference(s)

ADRB2 Activity (reporter) 7,800 (99.6%) ND 90
CYP2C9 Abundance 109 (1.17%) 17.4 18

Abundance 6,370 (68.4%) 36.8 31
Activity (direct) 6,142 (66.0%) 64.9

CYP2C19 Abundance 121 (1.30%) 29.8 18
LDLR promoter Activity (reporter) 945 (99.1%) 23.8 30
NUDT15 Abundance 2,923 (94.1%) 30.0 48, 52

Activity (survival) 2,935 (94.2%) 24.0
SLCO1B1 Abundance 137 (1.04%) 13.1 99
TPMT Abundance 3,689 (79.2%) 21.1 23
VKORC1 Abundance 2,695 (87.0%) 25.0 29

Activity (reporter) 697 (22.5%)

aNumbers refer to single missense amino acid variants only, except for LDLR promoter, for which they refer to single missense base substitutions.
bWhat constitutes decreased function for each MAVE is defined in the referenced study.
Abbreviations: MAVE, multiplexed assay of variant effect; ND, not determined.

TPMT

The thiopurine drugs thioguanine, 6-mercaptopurine (6-MP), and the 6-MP prodrug azathio-
prine are used to treat leukemia and autoimmune diseases by inhibiting de novo purine synthesis
and damaging DNA and RNA (33). Thiopurine drugs are administered as inactive precursors
that are metabolized into thioguanine nucleotides. If thioguanine nucleotides are not inactivated
by thiopurine methyltransferase (TPMT), they can accumulate to toxic levels that cause hepato-
toxicity and severe myelosuppression (34, 35). Genetic variation in TPMT is primarily responsible
for thiopurine intolerance in patients of European and African ancestry, while variation in nudix
hydrolase 15 (NUDT15) explainsmost of the VDRs to thiopurines in people of Asian andHispanic
backgrounds (36).

TPMT is highly polymorphic with more than 40 reported variants (37–39). Up to 14% of the
general population possess a TPMT variant that reduces thioguanine nucleotide metabolism and
may thus experience VDRs to thiopurines (40). CPIC provides guidelines for decreasing thiop-
urine doses based on TPMT variant function, which they have assigned for 12 variants (36).

Previous studies identified three TPMT variants that comprise 95% of decreased-function
TPMT alleles in individuals with European or African ancestry and showed that they decrease
TPMT abundance (41–43). Therefore, Matreyek et al. (23) used VAMP-seq (Figure 1a) to mea-
sure protein abundance of TPMT variants in HEK293T cells. They measured abundance scores
for 3,689 (79.2%) of the possible TPMT missense variants. VAMP-seq-derived TPMT variant
abundance scores correlated well with individually measured variant abundance (n= 19, Pearson’s
r = 0.75), and previously characterized variants had reduced abundance consistent with previous
studies (42–44).

Ninety-six of 118 rare TPMT variants of unknown function recently identified by large-scale
population sequencing (45) and by sequencing individuals with thiopurine intolerance (46) were
scored. Fourteen (14.6%) had low abundance and 17 (17.7%) possibly low abundance, indicating
that individuals with these variants may have increased risk for thiopurine toxicity. Overall, 777
(21.1%) of tested missense variants were classified as low abundance, most of which had not been
previously implicated in thiopurine intolerance.

536 Geck et al.

A
nn

u.
 R

ev
. P

ha
rm

ac
ol

. T
ox

ic
ol

. 2
02

2.
62

:5
31

-5
50

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
U

ni
ve

rs
ity

 o
f 

W
as

hi
ng

to
n 

on
 0

6/
08

/2
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



gnomAD: Genome
Aggregation Database,
a curated collection of
exome and genome
sequences compiled
from disease-specific
and population genetic
studies

NUDT15

Variation in NUDT15 also contributes to thiopurine VDRs. NUDT15 dephosphorylates
thioguanosine triphosphate to the less toxic thioguanosine monophosphate; thus, loss of
NUDT15 function elevates DNA-incorporated thioguanine (DNA-TG) and cytotoxic effects in
response to thiopurines (36).

Currently, CPIC suggests decreasing thiopurine dose or using alternate drugs for seven com-
monNUDT15 variants (36).However, the functional effects of otherNUDT15 variants, including
six recently discovered variants and 77 missense variants reported on the Genome Aggregation
Database (gnomAD) (47), remained unknown (48, 49).Thus, Suiter et al. (48) conducted two com-
plementaryMAVEs onNUDT15,measuring abundance and thiopurine toxicity for 3,077 (98.7%)
of the possible NUDT15 missense variants expressed in HEK293T cells.

They first assayed abundance by VAMP-seq since NUDT15 variants with known clinical ef-
fects have reduced stability (50). Thermal stability assays correlated with fluorescence (n = 14,
Spearman’s ρ = 0.98), validating the assay. In total, 735 variants had lower abundance than the
R139C variant, which is associated with decreased thiopurine tolerance (51), and were thus con-
sidered likely to also increase risk of thiopurine intolerance.

To directly assay thiopurine cytotoxicity, they treated cells expressing NUDT15 variants with
thioguanine for six days. Cells harboring loss-of-function NUDT15 variants were unable to
detoxify the thioguanine nucleotides and, consequently, grew more slowly (Figure 1c). They
validated the assay by measuring toxic DNA-TG accumulation, observing a negative correlation
between activity and DNA-TG (n = 9, Spearman’s ρ = −0.72). Combining multiple functional
scores to make a conclusion about overall variant function remains a challenge. In this case, Suiter
et al. (48) designated the lower of the abundance and thiopurine toxicity scores for each variant as
its activity score and determined that 1,152 (40.5%) of tested variants were potentially damaging.
Cagiada et al. (52) further analyzed the data and determined that 410 (14%) of the variants they
analyzed lost both activity and abundance, 270 (10%) only activity, and 439 (16%) were low
abundance but retained near-WT activity. In general, variants affecting fully buried residues led
to low abundance (29/35), while low-activity variants were in residues that coordinate substrate
and cofactor binding clustered around the active site (48, 52).

To assess the clinical utility of their functional data, Suiter et al. (48) used their activity scores
to predict thiopurine toxicity in 2,398 patients. Ten patients had NUDT15 missense variants; five
experienced thiopurine toxicity and five did not. Activity scores predicted these responses with
100% sensitivity and specificity, while either abundance or thiopurine sensitivity scores alone
lacked sensitivity, emphasizing the strength of combining scores from multiple assays that test
different aspects of variant function. Suiter et al. also identified 108 unique NUDT15 missense
variants in 8,871 individuals (6.3%) in gnomAD. Surprisingly, 8,323 (93.8%) of these individuals
had variants with likely damaging activity scores.

Future studies of NUDT15 are still necessary to address potential substrate specificity and
interactions with TPMT variants. Dosing strategies for individuals who harbor missense variants
in both genes (36) would be better informed by MAVEs of NUDT15 in the context of common
TPMT variants, and the converse. By addressing the combined effects of genes that contribute
to thiopurine toxicity, guidelines for administration of these important drugs could be further
improved.

VKORC1

Vitamin K oxidoreductase (VKOR) is a transmembrane protein, encoded by the VKORC1 gene,
that drives the vitamin K cycle and is necessary to carboxylate vitamin K–dependent clotting
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factors (53, 54). Variants with reduced abundance can cause vitamin K–dependent blood clot-
ting deficiency 2 (53). VKOR is the target of the anticoagulant drug warfarin, which is prescribed
to over 15 million people annually (55) who must be monitored to avoid hemorrhage or blood
clots.VKORC1 polymorphisms contribute 25% of the variation in warfarin dose (56), and another
15–20% is contributed by variants in CYP2C9, which metabolizes warfarin (57). Improper war-
farin dosing is associated with substantial risk of hemorrhage (58–60), so understanding factors
that contribute to warfarin VDRs is critical.

In 2007, the US Food and Drug Administration (FDA) updated the label of warfarin to include
information about pharmacogenetic testing for CYP2C9 and VKORC1 (61), and cell-based assays
were used to study the impact of a promoter variant on VKOR activity and abundance (53, 62–
65). However, the only variant included in CPIC guidelines is the promoter variant (66), and only
two variants were determined to be pathogenic by ClinVar (67), whereas 224 additional coding
missense variants have been identified in gnomAD.

Thus, Chiasson et al. (29) executed MAVEs assessing VKOR abundance and activity. They
measured the abundance of 2,695 (87.0%) missense variants via VAMP-seq (Figure 1a). MAVE
design was validated by testing individual fluorescence, which correlated well with abundance
scores (n = 10, Pearson’s r = 0.96); western blots also showed high concordance with abundance
scores. The activity of 697 (22.5%) variants was measured using an adapted cell-based assay in
which fluorescent antibodies signal successful carboxylation of a blood clotting cofactor secreted
and retained on the cell surface (68) (Figure 1c).

Based on the patterns of low variant abundance scores, Chiasson et al. (29) confirmed studies
showing that VKOR has four transmembrane domains (63, 69), not three as others proposed (70,
71). Positions necessary for VKOR activity were identified by investigating variants with high
abundance and low activity scores. Eleven functionally constrained positions defined part of the
VKOR active site, six of which were previously identified in vitamin K docking simulations (62).
Two conserved cysteines important for warfarin binding were also identified (63).

Chiasson et al. (29) curated a list of 215 variants previously reported to affect warfarin response
and classified 193 according to their abundance. Of these, 129 (60%) had WT-like or possibly
WT-like abundance, 30 (14.0%) were low abundance, and 12 (5.6%) were high abundance. Ad-
ditionally, one variant had low activity and high abundance, indicating that loss of its activity is
not a result of reduced abundance. Overall, they identified 54 previously uncharacterized clinical
variants that may contribute to warfarin VDRs.

Seven warfarin resistance variants have been previously identified (53, 66, 72, 73) and were
investigated to determine their effects on VKOR abundance and activity. Known resistance vari-
ants spanned a range of abundances, and all five of the resistance variants scored for activity were
WT-like, indicating they may confer resistance by blocking warfarin binding.

Given that VKORC1 promoter variation can alter warfarin sensitivity, future MAVEs focused
on VKORC1 expression are also warranted (74). Full understanding of the clinical implications of
missense variations in VKORC1 remains an important goal for treating blood clotting disorders.

CYP2C9

CYP2C9 encodes a cytochrome P450 enzyme that oxidizes endogenous and xenobiotic com-
pounds, metabolizing approximately 15% of small-molecule drugs (75). CPIC lists 11 level A
priority CYP2C9 gene-drug pairs (66, 76, 77), including the anticoagulant warfarin, the anticon-
vulsant phenytoin, and several nonsteroidal anti-inflammatory drugs.

CYP2C9 variants account for 15–20% of the variation in warfarin dose (57), often leading
to warfarin sensitivity: Patients with the loss-of-activity CYP2C9∗2 or ∗3 variants require lower
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PharmVar:
Pharmacogene
Variation, a
consortium that
catalogs nomenclature
and allelic variation in
pharmacogenes

warfarin maintenance doses and are at higher risk of a serious or life-threatening bleeding event
(78). Genotype-guided warfarin dosing can be effective in reducing VDRs in specific situations
(79) but relies on CYP2C9 and VKORC1 variants of known function.

Two groups have conducted MAVEs on CYP2C9 at different scales and measuring different
aspects of CYP2C9 function. Zhang et al. (18) constructed a variant library of 109 existing human
CYP2C9 missense variants and measured the abundance of these variants using VAMP-seq (23)
(Figure 1a).They found that 19 (17.4%) variants had less than approximately 25% ofWTprotein
abundance, indicating that these variants could lead to VDRs and should be of clinical interest.
Fifteen (78.9%) of these variants had not been previously reported by the Pharmacogene Variation
(PharmVar) Consortium.

Amorosi et al. (31) performed two MAVEs on over 8,000 total CYP2C9 variants, measuring
both enzyme activity and abundance. One library was codon optimized for human expression to
measure abundance and contained 6,370 (68.4%) of the possible missense variants, and one was
codon optimized for yeast expression to measure enzyme activity and contained 6,142 (66.0%)
variants. CYP2C9 variant abundance was measured using VAMP-seq (23) (Figure 1a) and val-
idated by individual fluorescence measurements, which correlated with abundance scores (n =
12, Pearson’s r = 0.94). Variant enzyme activity was measured using click-seq with a CYP2C9-
specific activity-based probe (an analog of tienilic acid, a covalent inhibitor of CYP2C9) coupled
to activity-based protein profiling (Figure 1e). The activity scores correlated highly with indi-
vidual labeling (n = 14, Pearson’s r = 0.99) and with gold-standard liquid chromatography–mass
spectrometry measurement of warfarin turnover (n = 14, Pearson’s r = 0.87).

Of these CYP2C9 variants, 2,347 (36.8%) had decreased abundance, and their abundance
scores correlated well with abundance reported by Zhang et al. (Pearson’s r= 0.74). Furthermore,
3,987 (64.9%) CYP2C9 variants showed decreased activity, and protein abundance was responsi-
ble for half of the variation in CYP2C9 function. Thus, as for NUDT15 and VKORC1, measuring
multiple protein functions can reveal a more comprehensive set of loss-of-function variants and
yield insight into the mechanisms by which variants alter function. By comparing variant activity
and abundance, Amorosi et al. (31) confirmed that the structural core of CYP2C9 was key for
protein stability and thus activity, although mutations to many positions involved in heme co-
ordination and binding had little effect on abundance yet ablated activity. Positions within the
CYP2C9 active site also generally tolerated mutations.

To assess the clinical utility of the multiplexed functional data, Amorosi et al. (31) compared the
activity and abundance scores to CPIC functional classes for 32 variants with clinical recommen-
dations and found them largely concordant. They also calculated activity scores for 340 missense
variants curated from gnomAD, 319 of which lacked functional annotations on CPIC. Addition-
ally, 199 (58.5%) variants exhibited a significant loss of activity, emphasizing the potential clinical
impact of these scores to identify individuals with a high likelihood of VDRs.

In the future, other substrates of CYP2C9 should be tested when measuring activity to deter-
mine the extent of substrate-dependent variant effects, which have been previously reported (80).
Performing a MAVE of CYP2C9 with a warfarin-derived substrate would be ideal, but this sub-
strate was not amenable to click-seq (A.E. Rettie, personal communication). Alternate approaches
like droplet-based microfluidics technologies coupled with fluorogenic substrates are also promis-
ing (81), but these approaches are not without their own technical challenges (82).

CYP2C19

CYP2C19 encodes a cytochrome P450 enzyme that metabolizes many important drugs, includ-
ing antidepressants, proton pump inhibitors, and the antiplatelet prodrug clopidogrel (83). CPIC
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lists eight drugs with level A priority in a gene-drug pair with CYP2C19. As with other cy-
tochrome P450 enzymes, variation in CYP2C19 can lead to interindividual variation in response
to CYP2C19-metabolized drugs.

Clopidogrel is metabolized into an active form primarily by CYP2C19, with several cy-
tochrome P450 enzymes playing lesser roles. Individuals with loss-of-function CYP2C19 vari-
ants have decreased platelet responsiveness to clopidogrel and are at increased risk for serious
adverse cardiovascular events (84). Additionally, the common gain-of-function CYP2C19∗17 pro-
moter variant results in increased activity, and individuals homozygous for this variant have an
ultrarapid metabolizer phenotype and an increased risk of bleeding complications when taking
clopidogrel (85, 86).

So far, a small MAVE has been performed on CYP2C19. Zhang et al. (18) constructed a vari-
ant library of 121 human CYP2C19 missense variants present in the general population and mea-
sured the abundance of these variants using VAMP-seq (23) (Figure 1a). They reported that 36
(29.8%) of these variants had less than approximately 25% of WT protein abundance, and flu-
orescence of five variants with a range of abundance scores correlated with previously published
western blot data (1). Thirty of the 36 low-abundance variants had not been previously reported in
PharmVar.

Future studies could use a more complete CYP2C19 library, consider testing additional phe-
notypes such as enzyme activity in addition to abundance, and measure the effects of noncoding
variation to CYP2C19 function, given the importance of the CYP2C19∗17 promoter variant.

ADRB2

ADRB2 encodes the β2-adrenergic receptor (β2AR), a G protein–coupled receptor (GPCR), the
target of agonist drugs used to treat asthma (albuterol and salmeterol) and antagonists used to treat
cardiovascular disease (carvedilol and propranolol) (87). β2AR signals through the heterotrimeric
Gs protein to activate adenylyl cyclase and generate cyclic AMP.

Three ADRB2 variants alter agonist response: R16G and Q27E enhance it, and T164I re-
duces it (87). However, due to conflicting results (87, 88), and because ADBR2 variation accounts
for only a small proportion of β2-agonist VDRs (89), ADRB2 is classified as having provisional
level D gene-drug interactions on CPIC, indicating a lack of sufficient evidence for prescribing
recommendations.

To characterize the functional effects of ADRB2 variants, Jones et al. (90) constructed a re-
porter system in HEK293T cells containing a barcode under the control of cyclic AMP response
elements.They integratedADRB2 variants into the reporter cells, treated themwith four different
concentrations of the β2AR agonist isoproterenol, and measured reporter expression by RNA-seq
(Figure 1d). They scored 7,800 (99.6%) ADRB2missense variants, confirming that R16G,Q27E,
and T164I behaved as expected in their MAVE and a luciferase reporter assay.

While Jones et al. (90) determined that 11 of the 180 ADRB2 missense variants in gnomAD
were potentially loss-of-function, they largely focused on structure-function relationships. Trans-
membrane domains were less tolerant of variation, and unbiased clustering by mutational toler-
ance revealed several important regions. Mutational tolerance correlated with residue conserva-
tion across GPCRs (Spearman’s ρ = −0.676), suggesting that ADRB2 functional data could apply
to conserved regions of other closely related GPCRs, including those that are the targets of widely
prescribed drugs (91).

The ADRB2 MAVE provides a generalizable approach to studying the function of drug re-
ceptors. Approximately 34% of FDA-approved drugs target GPCRs (92), and drugs that target
GPCRs or other transcriptional effector signaling pathways would be amenable to similarMAVEs.
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SLCO1B1

SLCO1B1 also encodes a transmembrane protein, the organic ion transporter protein 1B1
(OATP1B1). OATP1B1 is important for hepatic uptake of estradiol, bilirubin, and statin drugs
(93). Decreased OATP1B1 activity can lead to increased plasma concentrations of statins and my-
opathy (94). CPIC provides guidelines for simvastatin dosing, but they are specific to SLCO1B1∗5,
∗15, and ∗17, which contain a V174A substitution and are most common in individuals of Euro-
pean descent (93, 95).

Fifteen other SLCO1B1 variants have been individually characterized (93) and alter stability
and translocation to the plasma membrane (96–98). Investigating the possibility that uncharacter-
ized SLCO1B1 variants may decrease stability, Zhang et al. (99), who conducted two of the CYP
MAVEs described above, performed VAMP-seq (Figure 1a) on a small library of 137 SLCO1B1
variants identified in the general population. They found six variants (4.4%) with less than 25%
WT abundance and 12 (8.8%) other variants with less than 50% abundance. They confirmed that
all six of the very low abundance variants decreased OATP1B1 protein by western blotting and
decreased uptake of radiolabeled 17-estradiol β-d-glucuronide. Further work is needed to deter-
mine the clinical predictive power of SLCO1B1 functional scores, since there were no clinical data
available on the six proposed severely damaging alleles.

To assess loss-of-function by mechanisms other than degradation, Zhang et al. (99) considered
variants with mutations in the same TM4 domain as SLCO1B1∗5, which leads to mislocalization
and decreases activity but not abundance (100). They measured substrate uptake for eight vari-
ants in TM4. All had WT-like abundance, but two decreased and two increased substrate uptake,
indicating that variants of SLCO1B1 can have functional effects on activity but not abundance.

LDLR

Variants in the low-density lipoprotein (LDL) receptor gene LDLR are also important for the
pharmacokinetics of statin drugs, since loss-of-function variants can lead to increased LDL and
decrease response to lipid-lowering drugs (101). Variants in the promoter, introns, and coding
regions of LDLR have been shown to increase risk of familial hypercholesterolemia (102–106),
which is associated with VDRs that often lead to undertreatment (101). However, due to a lack of
clinical support for variant-drug interactions, prescribing guidelines are not available for LDLR on
CPIC. Five LDLR variants—two intronic and three in the 3′–untranslated region (UTR)—have
been cataloged as level 3 in PharmGKB, indicating a lack of evidence or replication.

Kircher et al. (30) conductedMAVEs on the promoter sequences of ten genes, including LDLR.
They expressed a library of all 954 variants in the LDLR promoter in HepG2 cells and quantified
the expression of downstream barcode sequences by RNA tag-sequencing (Figure 1d). Their
reporter values were in agreement with previously published luciferase activity assays.

Sequencing of 945 (99.1%) variant reporters met their quality control requirements. A total
of 288 (30.5%) variants led to significantly altered expression, with 225 (23.8%) decreased and 63
(6.7%) increased. Variants previously identified in individuals with familial hypercholesterolemia
(105) significantly decreased expression. In general, Kircher et al. (30) observed that variants in
the same transcription factor binding site led to similar functional effects. MAVEs in progress on
the coding region of LDLR are likely to identify other functionally important variants, since over
1,600 variants have been described (101).

As the firstMAVEon a noncoding region of a pharmacogene, this study of the LDLRpromoter
highlights the potential for multiplexed functional data to inform functional effects of noncoding
regions. The selection of a gene for which promoter variants have been identified in patients
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(103–105) and are known to alter pharmacological profiles increases the potential clinical utility
of these data.

THE FUTURE OF MAVEs ON PHARMACOGENES

Best Practices for Future MAVEs

Important lessons have been learned from MAVEs conducted on diverse genes that should be
applied to future MAVEs on pharmacogenes. As part of the Brotman-Baty Institute’s Mutational
ScanningWorking Group, we previously published suggestions on MAVE design and interpreta-
tion (32).

In particular, when designing a MAVE, it is essential to consider the intrinsic limitations of the
assay. Since each MAVE measures a specific function, one MAVE is unlikely to capture all func-
tionally abnormal variants. This limitation is exemplified by the CYP2C9,NUDT15, and VKOR
studies, which used MAVEs for abundance and also activity. Activity and abundance scores cor-
related well for CYP2C9 variants (Pearson’s r = 0.75) but not for NUDT15 or VKOR variants
(NUDT15 Pearson’s r= 0.38, VKOR Pearson’s r= 0.26), and even for CYP2C9, numerous vari-
ants were observed with reduced activity but WT-like abundance (31). Many completed MAVEs
on pharmacogenes focus on only a single time point or a single drug, but time- and substrate-
dependent effects of variants are important to consider when designing an assay (31, 90, 107).
The dynamic range of each MAVE must be broad enough to distinguish known pathogenic from
benign variants and validated by individually testing variants with a range of functional scores,
preferably by an orthogonal gold-standard assay (32).

Adequate replication and consistent analysis methods are essential to compensate for noisy data
(16, 17, 32); Kinney et al. (16) recommended protocols from the fields of experimental evolution
and RNA-seq to produce values such as selection coefficients, which are more meaningful than
commonly reported fold change–based functional scores. Selection coefficient–based scores can
more readily be used to compare across genes and between data sets from different laboratories.
Computing and reporting sensitivity and specificity of a MAVE for clinically characterized vari-
ants are also important for eventual implementation (32). For pharmacogenes with guidelines for
prescription of alternate drugs, it may be best to compromise on specificity for the sake of sensitiv-
ity in order to identify individuals who may be at risk for VDR and can be prescribed an alternate
drug (8).

Prioritizing Targets for Future MAVEs

Given the large number of pharmacogene variants of uncertain function, we need a systematic
approach to prioritize targets of future MAVEs.We previously identified 31 pharmacogenes with
high levels of evidence from CPIC that would benefit from functional analysis (17). In total, there
remain 12 pharmacogenes denoted as having at least one level A drug interaction on CPIC and
level 1A on PharmGKB that have not yet been investigated in MAVEs, published or in progress
(108) (Figure 2).

Other methods for prioritization involve considering the information available on each phar-
macogene and the adaptability of an assay to a MAVE. Of particular interest are pharmacogenes
with notable variation in gnomAD but little functional information or clinical consequences noted
in CPIC (17). Small proteins can be prioritized to simplify achievement of saturating mutagene-
sis, and assays of larger proteins could be simplified by focusing only on specific domains, as was
done for BRCA1 (28, 109, 110). Genes with functional assays amenable to multiplexing are also
attractive: Extant reporter assays can be adapted to MAVEs, and genes essential for growth are
good candidates for growth-based MAVEs.
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Figure 2

Pharmacogenes that significantly contribute to variable drug responses. Pharmacogenes listed have one or
more level A (Clinical Pharmacogenetics Implementation Consortium) or level 1A (Pharmacogenomics
Knowledgebase) drug interaction, signifying that genotyping can be used to inform drug prescription. Genes
are sorted by biological function to consider the most suitable types of multiplexed assay of variant effect
(MAVE). Genes in bold have been the subject of MAVEs; asterisks indicate a MAVE in progress, as listed on
MaveRegistry.

Developing New MAVEs for Pharmacogenes

Since most pharmacogenes are enzymes, focusing efforts on designing robust, activity-based
MAVEs is most likely to produce clinically relevant functional data. In order to study more com-
plex questions, new assays and analysis methods must be developed. MAVES on pharmacogenes
that encode secreted proteins, such as IFNL3 (111), would require a method to link each variant to
the cell that produced it while considering the effect of the variant on other cells in the population.

For pharmacogene variants, heterozygosity can affect risk of VDR, but current MAVEs do
not faithfully recapitulate endogenous expression. Using phasing to define important haplotype
interactions in pharmacogenes is likely to be informative, as observed for OATP1B1 N130D,
which decreases plasma statin concentrations in the SLCO1B1∗1B haplotype but increases plasma
statins on the ∗15 haplotype with V174A (112). MAVEs could interrogate interactions between
specific variants (8), which would be most beneficial for pharmacogenes with a small number of
common haplotype backgrounds.One study found that most noncoding variant-drug associations
on PharmGKB can be explained by haplotype associations with coding variants, supporting the
utility of pharmacogene MAVEs on coding variants for common haplotypes (113).

There is also great potential to expand MAVEs on pharmacogenes beyond single-nucleotide
variants in coding regions. A study of variants in 208 ADME genes in 62,402 individuals found
that 97% of genes had at least one copy number variant (114). Copy number variants are common
in GPCRs (115), and structural variants of cytochrome P450 gene CYP2D6 are found in 30% of
individuals with decreased CYP2D6 function (116). Recently, techniques using MuA transposase
or clustered regularly interspaced short palindromic repeat–associated protein 9 have been used
to make variant libraries of deletions (117, 118). Additionally, all of the current MAVEs on phar-
macogenes have focused on coding regions, with the exception of the LDLR promoter.Massively
parallel reporter assays have been successfully used to study the effects of regulatory elements
such as promoters, enhancers, splice sites, and UTRs (16, 119). Other MAVE selection methods
not yet applied to pharmacogenes include in vitro display, yeast two-hybrid screens, and transcrip-
tion factor binding (15, 16), which could be used to interrogate effects of variants on drug-receptor
binding or query the functions of regulatory factors. Applying these techniques to pharmacogenes
would increase the scope of clinically interpretable genomic information.
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MaveDB: a repository
for data sets from
MAVEs

Making Data from MAVEs Accessible

Before it can be applied clinically, the massive amount of data generated by MAVEs must be
made available, accessible, and interpretable. The repository MaveDB contains 110 data sets from
MAVEs on 65 targets (as of May 2021) and interfaces with applications for data analysis (120).
MaveRegistry also catalogs published and ongoing MAVEs to encourage collaboration and de-
crease redundancy (108). As of May 2021,MaveRegistry lists published MAVEs on 98 targets and
MAVEs in progress on an additional 43 targets.

Accessible data are essential for comparison of MAVEs and for development of tools with clin-
ical applications. Multiplexed functional data can be used to build more accurate variant function
prediction algorithms (8, 121, 122) and train machine learning algorithms to interpolate missing
functional scores (123, 124).

Applying Multiplexed Functional Data in the Clinic

Clinical implementation of multiplexed functional data for PGx will require an increase in se-
quencing for precision medicine, which is promoted by variant functionalization: 85% of physi-
cians do not routinely order PGx testing, mostly due to lack of guidelines for action based on
test results (125). As more variants of actionable pharmacogenes are interpreted, the benefit of
ordering PGx testing increases (9). Therefore, clinical action requires improved understanding of
variant function and communication of functional data to clinicians.

There remains a need for a standardized system to incorporate variant functional scores into
clinical databases. Thousands of pharmacogenetic biomarkers have been discovered, but relatively
few have been implemented in the clinic due to challenges in validation and implementation (4).
The American College of Medical Genetics and Genomics and the Clinical Genome Resource
published guidelines that were designed for low-throughput functional assays and that can also
be applied to MAVEs (32, 126–128). Reporting to repositories such as PharmVar will require
determining the strength of evidence generated by each variant functional score, based on the
sensitivity and specificity of the assay and on the reproducibility of the score itself (32). Eventually,
we hope that a centralized database for MAVE reporting can be linked to relational databases
curated by CPIC and PharmGKB, so functional scores can be directly communicated to clinicians
and thereby be of greater use to the community (8). Standardized reporting and scoring guidelines
for repositories, and educating clinicians on data availability and interpretation, are necessary to
increase the impact of variant functionalization.

CONCLUSIONS

So far,MAVEsmeasuring a diversity of important protein andDNA sequence functions have been
applied to eight pharmacogenes, covering nearly 25,000 variants. These data have the potential to
contribute to pharmacogene variant interpretation from clinical sequencing data. By conducting
multiplexed functional studies on more pharmacogenes, and making that information available to
clinicians, we can improve precision medicine for safe and accurate drug dosing.
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