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Determining how genetic variation contributes to human health

and disease is a critical challenge. As one of the most

genetically tractable model organisms, yeast has played a

central role in meeting this challenge. The advent of new

technologies, including high-throughput DNA sequencing and

synthesis, proteomics, and computational methods, has vastly

increased the power of yeast-based approaches to determine

the consequences of human genetic variation. Recent

successes include systematic exploration of the effects of gene

dosage, large-scale analysis of the effect of coding variation on

gene function, and the use of humanized yeast to model

disease. By virtue of its manipulability, small genome size, and

genetic tractability, yeast is poised to help us understand

human genetic variation.
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Introduction
With acceleration of sequencing technologies, many

human genomes are becoming available from patients,

tumors, and thousands of individuals from diverse popu-

lations. In parallel, linkage mapping, genome-wide

association strategies, and analyses of de novo mutations

are rapidly linking genomic regions to phenotypes in-

cluding disease susceptibility. However, defining which

genetic variants are causative for phenotype has become

rate-limiting. Furthermore, the abundance of rare vari-

ation means that sequencing more genomes is unlikely to

solve this problem (e.g. [1,2]). We propose that new

technologies such as high-throughput DNA sequencing,

proteomics, and computational approaches can empower

model organism genetics to fill this gap by enabling high-

throughput, generic, genome-scale functional assays for

characterizing variation in the human genome. Yeast,

especially the budding yeast S. cerevisiae, is uniquely

suited to this task because of its versatility, small genome
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size, and powerful array of existing tools (reviewed in [3]).

Methods for understanding the consequences of human

variation using yeast fall into three broad categories:

1. systematic analysis of gene dosage; 2. recreation of

human variants in their yeast orthologs; and 3. cross-

species complementation and heterologous expression.

In addition to enabling direct measurement of the con-

sequences of specific genetic variants, work in yeast and

other model organisms will be necessary for understand-

ing the essential underlying biology. These larger bio-

logical questions include the distribution of effect sizes of

genetic variants, the contribution of genetic modifiers and

the role of epistasis more generally, and, of course, the

fundamental molecular mechanisms by which genes and

their variants act.

Systematic analysis of gene dosage
Yeast is easily amenable to purposeful manipulation of

gene dosage, most frequently via loss of function but

increasingly by overexpression as well. Examining the

resulting phenotypes can reveal the function of the

element whose dosage is changed (Figure 1a). When

specific phenotypes are shared, connections between

yeast and human can be relatively easy to recognize.

Famously, work in yeast correctly predicted the role of

the human mismatch repair genes hPMS1, hMLH1, and

hMSH2 in hereditary non-polyposis colon cancer based on

the yeast knockouts’ mutator phenotypes [4]. More sys-

tematic approaches have now become possible (reviewed

in [5]); for example, yeast genes involved in mitochon-

drial biology were used to identify human orthologs with

similar cellular roles [6]. These early studies highlighted

the power of gene deletion to make inferences about

protein function.

Large-scale studies of the consequences of gene dosage

changes are pushing this approach towards its logical

conclusion in many organisms. In yeast, a variety of tools

are available including comprehensive collections of

deletions [7,8], overexpression plasmids [9,10], and hypo-

morphic alleles [11,12]. These resources have been used

effectively to infer the function of previously unanno-

tated genes [13], understand how human drugs interact

with alterations in gene dosage [14], and determine how

gene loss relates to basic cellular processes such as meiosis

[15]. These are a small sample of the hundreds of

examples that have been successful so far. Thanks in

no small part to these model organism studies, we now

have a relatively clear idea of how loss of specific gene

functions can result in disease, and some idea of the
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Methods of assessing human variation in yeast. (a) A human gene of interest (light blue) and its orthologous yeast gene (dark blue) are shown.

Systematic adjustment of the dosage of the yeast gene (e.g. by deletion or overexpression) followed by examination of the resulting yeast phenotype

can reveal the function of the human ortholog. Epistatic interactions can be explored by examining the consequences of multiple deletions. Adding or

removing adjacent chromosome segments can reveal the consequences of more complex changes in copy number. (b) An alignment between a

human gene (light blue) and its yeast ortholog (dark blue) is shown. Variants of interest in the human gene are shown in light red. The sequence

alignment is used to identify orthologous positions in the yeast gene (dark red). The human variants of interest are introduced into the yeast ortholog

and the consequences for protein function quantified. (c) A gene of interest in humans (light blue) and yeast (dark blue) is knocked out in yeast. Each

human variant is tested for its ability to complement the yeast deletion.
characteristics of genes which make them more or less

likely to be associated with strong phenotypes. For

example, for some genes, lack of an obvious knockout

phenotype is explained by the presence of a paralog that

compensates for the function of the deleted gene, a

hypothesis proven at genome scale using double knock-

out libraries of duplicate genes [16,17]. The effects of

heterozygosity have also been explored systematically in

yeast; specifically the entire set of haploinsufficient genes

is known in both rich media [18] and in many specific

conditions (e.g. [19]), giving predictions that may be

important for understanding dominance patterns in
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human disease alleles. ‘Haploproficient’ genes, those

for which heterozygous loss-of-function variants actually

improve growth, are predictive of potential driver genes

in cancer [20].

In addition to simple cases where the dosage of a single

gene is altered, yeast is uniquely suited to the study of

more complex alterations in gene dosage. For example, a

complete survey of all pairwise gene deletions in yeast is

nearing completion, and has already led to a comprehen-

sive understanding of the range of interaction effects

between loss-of-function alleles (e.g. [21]). Lethal
es to understanding human genetic variation, Curr Opin Genet Dev (2013), http://dx.doi.org/
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pairwise deletions suggest opportunities for genotype-

targeted cancer therapeutics: if a tumor harbors a particu-

lar mutation, drugs could be used to target a known

synthetic lethal interaction partner. Systematic studies

in yeast of genes underlying tumor phenotypes such as

chromosomal instability have suggested exactly such

attractive drug targets [22,23�]. Complex haploinsuffi-

ciency, in which heterozygosity at two loci leads to a

growth defect, extends the space of potential genetic

interactions, with obvious relevance for diploid genetics

[24–27].

Events affecting larger numbers of genes simultaneously,

such as deletion or amplification of chromosomes or

portions thereof, underlie a number of human diseases,

most notably cancer, developmental disorders, and a

growing variety of neurological diseases (reviewed in

[28]). These structural alterations are difficult to model

from the data we already have regarding the effects of

altering the dosage of single genes because changing the

dosage of multiple genes often has unpredictable results.

Even simple questions, such as the number and identity

of driver genes that contribute to the phenotypic con-

sequences of a particular structural variant, have only

been dissected in very specific examples. Study of struc-

tural variation in model organisms can elucidate the

mechanisms by which these genomic alterations influ-

ence human disease and other phenotypes (reviewed in

[29]). Yeast is particularly amenable to chromosome

engineering approaches to studying these complex

events, using classical methods such as chromosome

fragmentation vectors, yeast artificial chromosomes, and

movement of whole chromosomes using karyogamy

deficient mutants, as well as more modern synthetic

biology methods. For example, synthesis of an arm of

yeast chromosome IX enabled the systematic incorpora-

tion of 43 loxP sites [30]. Recombination amongst these

sites upon Cre exposure generated a host of rearrange-

ments, insertions, and deletions, whose effects could then

be measured in parallel. Thus, synthetic biology

approaches in yeast have the potential to enable large-

scale studies of the consequences of complex genomic

alterations. The data derived from these studies could

move us closer to our ultimate goal: a model for predicting

the effects of genomic alterations in humans.

Recreation of genetic variants in orthologs
Complete loss-of-function alleles comprise a minority of

the relevant genetic variation in humans and other organ-

isms. Most genes have many alleles ranging from com-

plete loss of function to subtle alterations in function. For

genomic regions with significant conservation, human

variants can be tested for function by making homologous

mutations in their yeast orthologs (Figure 1b). For

example, MSH2 alleles associated with hereditary colon

cancer were systematically evaluated in yeast, where

different alleles were shown to interfere with different
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aspects of the protein function [31]. In another success

story, variants in MTO1 discovered by exome sequencing

in patients with hypertrophic cardiomyopathy were vali-

dated in yeast by recreating the orthologous mutations

[32�].

Advances that combine high-throughput DNA sequen-

cing with selection for function have supercharged these

approaches by enabling the simultaneous characterization

of all possible single amino acid changes in a protein of

interest [33]. For example, simultaneous characterization

of all possible point mutations in ubiquitin, associated

with numerous diseases, identified mutation-sensitive

regions and binding partner locations [34�]. These

approaches could help narrow down protein regions

where pathogenic variants reside, and could contribute

to dissecting separation of function, in which variants in

the same gene are pathogenic but for different molecular

reasons.

Cross-species complementation and
heterologous expression
Despite the value of using orthologous genes, conserva-

tion-based inference of mutation effects can be fraught

[35]. In some cases, direct testing of variants in their

native gene context might be more desirable. In yeast,

this has been attempted in two ways: cross-species com-

plementation and heterologous expression. Cross-species

complementation is simply the ability of human genes to

rescue an orthologous loss-of-function mutation in

another organism (Figure 1c). The conservation of core

cell biology among all organisms means that this approach

is often successful, even in simple eukaryotes such as

yeast (reviewed in [36–38]). Complementation of yeast

mutations by human genes is a classic method that has led

to many breakthroughs in the understanding of human

gene function (reviewed by [39]). According to the Sac-

charomyces Genome Database and the Princeton Protein

Orthology Database [40], as of 2009, over 350 such

experiments had been published, with at least partial

complementation reported for over 200 genes. In one

study, 25% of yeast essential gene deletions could be

rescued by a human sequence [41]. Human gene expres-

sion in yeast must be approached with care, however;

toxicity from overexpression has been observed in as

many as 30% of attempts [42], and partial fusions with

the yeast gene are sometimes required for full activity.

One early application of this approach was with

cystathione b-synthase (encoded by CBS in human and

CYS4 in yeast), where mutations cause homocystinuria.

The human CBS gene complements cys4 mutations in

yeast [43], and human disease alleles have been recapi-

tulated in yeast [44]. This system has recently been scaled

up to test dozens of human alleles for function and

cofactor dependencies [45�]. These experiments empha-

size another benefit of working with yeast: environments
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and genetic backgrounds can easily be modified to deter-

mine what may exacerbate or relieve the effects of

variants, pointing towards potential treatments.

Despite the anecdotal success of cross-species comple-

mentation and the development of humanized yeast as

models for studies on Parkinson’s and apoptosis [46,47],

systematic approaches have only recently been made

practical by advances in clone libraries and vector engin-

eering. For example, the human ORFeome collection is

an ongoing project that together with the Mammalian

Gene Collection has assembled a clone library of

sequence-confirmed human cDNAs for over 90% of

genes, including a growing assortment of splice variants

[48,49]. These are available in the Gateway vector sys-

tem, facilitating their transfer to yeast expression vectors.

Collections of humanized yeast strains, generated from

these clone collections in combination with the deletion

collection, are likely to become a new resource that could

be used to easily and rapidly examine variants in many

human genes of interest.

Even when a human gene does not have a clear ortholog

in yeast, its function may still be studied via heterologous

expression. For example, p53, a critical tumor suppressor

gene, has no yeast ortholog. Nevertheless, p53 trans-

activation assays in yeast have been used to study all

2314 point mutations [50] and to identify second-site

suppressor mutations [51,52]. Yeast-based measures of

variant p53 transactivation have also been useful in teas-

ing apart transactivation-dependent and transactivation-

independent p53 activities [53]. In another example,

screening of RNA-binding proteins for aggregation in

yeast enabled the identification of new amyotrophic

lateral sclerosis candidate genes [54��]. Additionally,

yeast is an excellent platform for studying protein-protein

interactions, both of endogenous and human proteins

[55–57]. For example, a two-hybrid approach was used

to understand how mutations in FIG4 cause Charcot-

Marie-Tooth disease [58]. Yeast-based complementation

or heterologous expression assays could also be coupled to

high throughput mutagenesis and deep sequencing-

based approaches as described above. These approaches

yield a complete sequence-function map for a given gene,

revealing how variation in the gene impacts function.

Limitations of model organism approaches
Of course, all model systems have their downsides.

Approaches in yeast might be most productively viewed

as a method for intelligently prioritizing experiments to

be done in more complicated and expensive mammalian

models. An obvious caveat of evaluating human alleles in

other organisms is that some genes will not be equiva-

lently functional outside their native context of a human

cell. Furthermore, some variants may disrupt interactions

with proteins not present or too diverged in other systems,

or may affect processes such as transcript splicing that are
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not recreated in cDNA-based systems. Most problema-

tically, certain pathways including those related to de-

velopment and multicellularity might be largely off limits

in single-celled organisms such as yeast. However, many

of these genes have some conserved function in yeast as

most genes ultimately function in individual cells.

Surprisingly, these limitations are not as strict as one

might suppose because even when the exact biological

process in absent, the underlying genetic architecture is

often conserved. This fundamental unity of evolution, in

which genes and modules are reused for various purposes

in different organisms, is detectable by looking at ortho-

logous phenotypes. Two phenotypes are orthologous (so-

called ‘phenologs’ [59�,60]) when they are produced by

mutations in a set of common orthologous genes. By

taking advantage of phenologs, experimenters can derive

nonobvious models for complex human disease in organ-

isms like yeast. For example, a systematic hunt for

orthologous human disease phenotypes in model organ-

isms suggested a yeast model for angiogenesis defects,

among other potential applications [60]. Thus, phenologs

provide a Rosetta stone for those wishing to use model

organisms to study the effect of genomic variation on

human disease.

Of course, another requirement for these approaches is

the presence of a measurable phenotype. The exper-

imenter has some flexibility, as phenotype can be defined

as broadly as survival or as specifically as binding to a

given target, depending on how the assay is designed.

Additionally, the magnitude of the phenotype required

has been steadily shrinking and the requirement for a

characteristic phenotype is not absolute. Pooled, compe-

tition-based schemes can detect small, quantitative

changes in function. Rather than relying on a particular,

pre-selected phenotype to infer the consequences of

variation at a disease-related locus, unbiased phenotyping

methods can be used. Examples include high-content

screening, in which changes in morphology are measured;

proteomics, in which protein abundance and post-transla-

tional modification are measured; and RNAseq, in which

global changes in the transcriptome are measured. In each

case, the effect of disease-associated variants can be

inferred by examining global changes (e.g. in gene

expression or cellular phenotype) rather than specific

ones.

Conclusion
We have argued that yeast is an ideal model organism in

which to address the consequences of human genomic

variation. We have reviewed the key approaches that have

already allowed huge progress in understanding human

and yeast genetic perturbations, ranging from single point

mutations to entire extra chromosomes. Additionally, the

genetics underlying disease is sometimes so poorly under-

stood that model organisms are needed just to define
es to understanding human genetic variation, Curr Opin Genet Dev (2013), http://dx.doi.org/
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these basics (reviewed in [61]). For example, complex

traits are notoriously difficult to dissect using genomic

data. Despite genotyping tens of thousands of individ-

uals, genome wide association studies often report a large

amount of missing heritability. Missing heritability could

arise from genetic interactions, a possibility recently

receiving more attention in the human genetics com-

munity [62]. Yeast enable specific crosses to be carried

out and the progeny phenotyped quantitatively, shedding

light on this central problem [63,64��]. The effects of

genetic background also constitute a significant con-

founding factor in our ability to determine how variation

at a given locus impacts phenotype. For example, even

gene essentiality can be profoundly different between

genetically diverse strain backgrounds [65]. More dense

phenotyping could also be helpful, as attempted in a

recent ‘phenomics’ analysis of a collection of diverse

yeast strains [66]. Although these approaches remain

challenging, yeast offers our best hope for beginning to

disentangle these confounding phenomena.

Even more fundamental questions remain, and are cen-

tral to disease. How many mutational paths are there to a

given phenotype? How do complex phenotypes arise?

How do mutations at different loci interact? Human

genetics approaches to answering these questions are

hampered by the complexity of the human genome

and our lack of ability to manipulate it. Yeast, free from

these limitations, is the perfect system in which to begin

to answer these questions.
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