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Abstract

Noncoding genetic variation is known to significantly influence gene expression levels in a growing number of specific
cases; however, the patterns of genome-wide noncoding variation present within populations, the evolutionary forces
acting on noncoding variants, and the relative effects of regulatory polymorphisms on transcript abundance are not well
characterized. Here, we address these questions by analyzing patterns of regulatory variation in motifs for 177 DNA
binding proteins in 37 strains of Saccharomyces cerevisiae. Between S. cerevisiae strains, we found considerable polymor-
phism in regulatory motifs across strains (mean p = 0.005) as well as diversity in regulatory motifs (mean 0.91 motifs
differences per regulatory region). Population genetics analyses reveal that motifs are under purifying selection, and there
is considerable heterogeneity in the magnitude of selection across different motifs. Finally, we obtained RNA-Seq data in
22 strains and identified 49 polymorphic DNA sequence motifs in 30 distinct genes that are significantly associated with
transcriptional differences between strains. In 22 of these genes, there was a single polymorphic motif associated with
expression in the upstream region. Our results provide comprehensive insights into the evolutionary trajectory of
regulatory variation in yeast and the characteristics of a compendium of regulatory alleles.
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Introduction
Noncoding genetic variation makes a significant contribution
to phenotypic diversity and disease susceptibility by modu-
lating gene expression (Rockman and Kruglyak 2006; Skelly
et al. 2009). Examples of noncoding variants causing pheno-
typic differences within and between species are rapidly
accumulating in diverse lineages (Wray 2007). For example,
noncoding variants have been identified that cause pigmen-
tation differences in Drosophila (Wittkopp et al. 2002), skel-
etal reduction in stickleback fish (Shapiro et al. 2004), skin
wrinkling in the domesticated dog (Akey et al. 2010; Olsson
et al. 2011), and loss of neck feathers in chicken (Mou et al.
2011). Although the precise molecular mechanisms that
causal noncoding variants act through remain poorly defined,
many regulatory variants likely alter the binding of sequence-
specific DNA-binding proteins. These proteins affect gene
expression by interacting with the transcriptional machinery,
cooperatively binding to other activating or repressing pro-
teins, or modulating chromatin structure (Lee and Young
2000; Farnham 2009).

Yeast is an excellent system in which to study noncoding
variation because of the availability of whole-genome se-
quences from diverse strains and species. For example,
whole-genome sequences are available for 37 Saccharomyces
cerevisiae strains, which are functionally and geographically
diverse (Liti et al. 2009). In addition, sequence motifs for the
majority of known DNA-binding factors in yeast have been

characterized (Bryne et al. 2008). Motif usage across species
has been studied extensively in yeast. Previous work on the
evolution of noncoding regions has shown that motifs rapidly
turn over between species, including yeast (Dermitzakis and
Clark 2002; Moses et al. 2006; Borneman et al. 2007; Doniger
and Fay 2007). In some cases, genes whose co-expression has
been conserved across species may have acquired different
regulators in different species, as in the case of ribosomal
protein modules in yeast (Wapinski et al. 2010). Despite
this frequent turnover, often the presence of specific motifs
is conserved, if not the location (Doniger and Fay 2007).
Motifs that are conserved within and between species are
correlated with several characteristics, such as being upstream
of essential genes, closer to transcription initiation sites, and
within open chromatin regions (Francesconi et al. 2011).

More generally, previous analyses of noncoding regions in
diverse species have found strong signatures of both positive
and negative selection (Mustonen and Lassig 2005; Chen et al
2010; He et al. 2011). These studies have had several limita-
tions, however; for example, they have focused on small col-
lections of known binding sites (Mustonen and Lassig 2005),
motifs involved in key developmental modules (He et al.
2011), or motifs ascertained based on their conservation
(Chen et al. 2010).

Gene expression variation has also been studied extensively
in yeast. These studies have revealed that specific classes of
genes are more likely to diverge between species (Thompson
and Regev 2009), and such loci share architectural features
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such as containing a TATA box in their promoter and har-
boring more binding sites for regulatory proteins (Tirosh et al.
2006). In addition, expression QTL (eQTL) studies have iden-
tified a significant role for cis-acting variation in gene expres-
sion differences between strains or species (Brem et al. 2002;
Ronald and Akey 2007; Ehrenreich et al. 2009; Tirosh et al.
2009; Emerson et al. 2010). Differences in predicted motifs
have been associated with expression differences for some of
the genes with cis-linkages in a cross between two strains
(Chen et al. 2010). In addition, Zheng et al. (2010) identified
several hundred genes showing significant gene expression
variation associated with differences in protein binding for
the factor STE12 (Zheng et al. 2010). Thus, variation in
DNA-binding motifs can be an important causal source of
gene expression variation.

In this study, we describe a comprehensive genome-wide
analysis of polymorphisms located in 177 DNA sequence
motifs across 37 S. cerevisiae strains (Liti et al. 2009). We
expand the number of motifs studied from previous studies,
and identify motifs genome-wide in an unbiased manner
without regard to conservation. We perform extensive pop-
ulation genomics analyses that reveal DNA sequence motifs
are subject to purifying selection, and quantify the strength of
selection for each motif. Furthermore, we used RNA-Seq data
that were previously collected for 22 of these strains and
performed association analyses between polymorphisms in
motifs and differences in gene expression. We identified six
polymorphic motifs associated with widespread and consis-
tent changes in gene expression, 49 polymorphic motifs as-
sociated with transcriptional variation at individual genes, and
a compendium of high confidence regulatory alleles.

Results

Regulatory Motif Variation across S. cerevisiae Strains

We first examined patterns of motif differences across 37
globally and functionally diverse S. cerevisiae strains whose
genomes have been sequenced (Liti et al. 2009; supplemen-
tary fig. S1, Supplementary Material online), by independently

calling motifs in all strains (see Materials and Methods). We
found substantial divergence in motif content across strains.
The average pairwise number of motif differences per inter-
genic region is 0.91 motifs (range 0–27; fig. 1A), and as ex-
pected pairwise motif differences recapitulate the known
phylogeny (data not shown). Across all strains, a median of
eight motifs were called in each intergenic region, and a
median of four motifs per intergenic region were variable in
at least one of the 37 strains (range 0–137). One example of a
highly divergent region is the region upstream of AAH1,
an adenine deaminase, which is regulated by nutrient levels
(fig. 1B). Another highly variable region is upstream of FLO1,
which is involved in flocculation, a phenotype known to have
diverged between laboratory and wild strains (Liu et al. 1996).
Interestingly, a cluster containing both lab and wild strains
shows a divergent motif pattern in this region (fig. 1C). A list
of additional genes with highly polymorphic motif patterns is
provided in supplementary table S1, Supplementary Material
online.

Evolutionary Forces Shaping Patterns of
Polymorphism and Divergence of Regulatory
Sequences

To quantify the strength of selection acting on intergenic re-
gions more systematically, we used the McDonald-Kreitman
framework to assess deviations from neutral expectations
across intergenic regions (McDonald and Kreitman 1991).
For measures of divergence, we used S. paradoxus as an out-
group. We initially characterized the evolutionary forces acting
at four classes of sites: nonsynonymous, noncoding sites
within predicted motifs, noncoding sites outside predicted
motifs, and experimentally determined motifs (MacIsaac
et al. 2006; see Materials and Methods). Specifically, we
counted polymorphic and diverged sites across all intergenic
and genic regions that could be aligned between S. cerevisiae
and S. paradoxus (~4,700 regions). As putatively neutral sites,
we used synonymous sites. We found that purifying selection
acts on all four classes of sites (P< 2.2� 10�16). We next
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FIG. 1. Examples of highly divergent regulatory regions across Saccharomyces cerevisiae strains. (A) Histogram of the mean pairwise percentage of
variables motifs across 37 S. cerevisiae strains for each of the 5,468 intergenic regions. (B) Predicted motif calls for 37 S. cerevisiae strains are plotted for
the intergenic region upstream of the gene AAH1. Each row is a strain, and colored boxes represent motif calls. Different colors represent distinct
motifs. A phylogeny for the strains is shown to the left, as constructed from the motif calls for that region. (C) Predicted motif calls for a section of the
intergenic region upstream of the gene FLO1. The region shown represents 1,000 bp upstream of the gene, out of 7,218 total upstream bases. A
divergent clade is highlighted in gray, and within this clade wild strains are marked with a red dot in the phylogeny, whereas laboratory strains are
marked with a blue dot.
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estimated the –log(Neutrality Index), denoted as -log(NI)
(Rand and Kann 1996), to compare the magnitude of pu-
rifying selection across site types. A value for –log(NI) of
zero is consistent with neutrality, negative values suggest
negative selection, and positive values indicate positive se-
lection. As expected, the �log(NI) was lowest for experi-
mentally determined motifs, which appear to be under
strong purifying selection. We also found that –log(NI)
was lower at noncoding sites inside predicted motifs com-
pared with noncoding sites outside of motifs and nonsy-
nonymous sites, suggesting that a higher proportion of sites
falling within predicted motifs are under purifying selection
than in the other classes of sites (fig. 2A). The observation
that �log(NI) at noncoding sites outside predicted motifs
was similar to that at nonsynonymous sites is unexpected
because noncoding sites outside motifs are generally
thought to be subject to less functional constraint.
However, this result may be due in part to the high thresh-
old we used to call motifs; lowering the threshold resulted
in the �log(NI) at noncoding sites outside motifs becoming
closer to neutral expectations (supplementary fig. S2, Sup-
plementary Material online).

To identify heterogeneity of selective constraint across
DNA-binding motifs, we calculated a motif specific estimate
of the �log(NI). As shown in figure 2B, selective constraint
varies widely across motifs, with some motifs under very
strong purifying selection. Out of 133 motifs with sufficient
data (see Materials and Methods), we identified 112 whose –
log(NI) was significantly less than zero (supplementary table
S2, Supplementary Material online). As expected from the
earlier discussed analysis, a sizable number of motifs (63)
had a –log(NI) significantly lower than that at nonsynon-
ymous sites.

Moreover, we examined constraint acting at the level of
individual intergenic regions. To this end, we compared poly-
morphism and divergence at sites that fell within predicted
motifs in each region with synonymous sites in the genes
flanking each region. We found that many intergenic regions
had negative –log(NI), as expected from the motif-specific
results described earlier, although the power of this analysis
is lower given the reduced number of polymorphisms and
divergent sites within each region. Using the MK test, we
identified 152 regions that have significant evidence for puri-
fying selection at false discovery rate (FDR) = 0.10. Eleven of
these regions were significant after a more stringent
Bonferroni correction for multiple testing (supplementary
table S3, Supplementary Material online). We did not find
any regions significant for positive selection at FDR = 0.10 or
after a Bonferroni correction; however, four regions had a
suggestive P value (P� 0.05, uncorrected). Three of these re-
gions flanked genes of unknown function; the remaining
region flanks ADH4, an alcohol dehydrogenase gene, which
has been linked to increased ethanol production (Mizuno
et al. 2006). Interestingly, many S. cerevisiae strains were do-
mesticated for use in fermentation, and thus positive selec-
tion for changes in the regulation of ADH4 may have occurred
between S. cerevisiae and S. paradoxus, which may have made
S. cerevisiae favorable for use in domestication.

Patterns of Motif Polymorphism Are Significantly
Correlated with Transcriptional Variation among
Strains

To assess the relationship between motif and gene expres-
sion variation, we obtained RNA-Seq data that had been
collected on a subset of the 22 strains of S. cerevisiae an-
alyzed earlier (Skelly et al. submitted). We performed ex-
tensive normalization of the data to account for batch
effects and unknown sources of variation (see Materials
and Methods). By analyzing the complete distribution of
P values using the positive false discovery rate approach of
Storey and Tibshirani (2003), we estimate that 79.0% of
genes are differentially expressed across the 22 strains. Of
these, 5,472 genes are significantly differentially expressed at
a FDR = 0.10.
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FIG. 2. Evolutionary forces acting at intergenic regions. (A) –log(NI)
scores for three classes of sites (experimentally determined sites, non-
coding sites falling within predicted motifs, and noncoding sites falling
outside predicted motifs) are plotted. –log(NI) scores were obtained by
summing information across all sites of a particular class and using
synonymous sites within genes as putatively neutral sites. Confidence
intervals were obtained by bootstrapping (see Materials and Methods).
95% CI for nonsynonymous sites are shown as in gray. (B) –log(NI)
scores for each of 133 motifs, sorted from lowest –log(NI) to highest
–log(NI). –log(NI) scores were obtained by summing information across
all sites genome-wide falling within a particular motif, and comparing
with all synonymous sites. Motifs with low numbers of polymorphic and
divergent sites were excluded due to low power to detect differences
with such low counts (<15 total sites). Confidence intervals were ob-
tained by bootstrapping (see Materials and Methods).
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We investigated the relationship between motif polymor-
phism and transcriptional variation using two complimentary
approaches. First, we tested for associations between the pres-
ence or absence of motifs and expression levels at down-
stream genes. Specifically, we performed association tests
correcting for population structure for 13,089 motifs located
upstream of 3,505 distinct genes (Connelly and Akey 2012).
We note that with a small sample size of 22 strains, we have
limited power to detect variants, except those with large
effect sizes (supplementary table S4, Supplementary
Material online). We found 49 polymorphic motifs located
upstream of 30 distinct genes that were correlated with sig-
nificant changes in gene expression (FDR = 0.10). Of the 49
associated polymorphic motifs, 21 resulted in increased
expression with the presence of the motif (i.e., acted as an
activator) and 28 resulted in decreased expression with the
presence of the motif. Interestingly, 22 of these genes con-
tained only a single polymorphic motif associated with ex-
pression variation in the upstream region (table 1). In
addition, one gene did not contain any additional promoter
variants located outside of motifs that are in strong linkage
disequilibrium (r2> 0.8) with the polymorphic motif (fig. 3).
Moreover, we found evidence for one case of a bidirectional
promoter, where polymorphism in the REB1 motif was asso-
ciated with changes in expression of both flanking genes.

In addition, we tested the hypothesis that levels of se-
quence conservation varied between polymorphic motifs
that were or were not associated with differences in gene
expression. Using phastCons scores from the 12-species

yeast alignment (Siepel et al. 2005), we compared the mean
conservation score at 1,039 polymorphic motifs nominally
associated with expression differences among strains
(P� 0.05) with a null distribution constructed by drawing
the same number of randomly chosen motifs not associated
with gene expression differences. We found conservation was
significantly higher at motifs associated with expression dif-
ferences (P = 0.024). Thus, the statistical and bioinformatics
data strongly suggest that these 22 polymorphic motifs are
enriched for causal regulatory polymorphisms.

Second, we tested whether motifs were acting consis-
tently as activators or repressors across a majority of genes
upstream of which they were polymorphic. Specifically, for
the ith motif, we identified all genes whose upstream inter-
genic region contained a variable motif i. We discarded
genes where the variable motif was only observed in a
single strain. Next, we converted gene expression values
for this set of genes to a Z score and tested for differences
between the distribution of expression values when motif i
was present or absent (see Materials and Methods). At a
FDR = 0.10, we found that polymorphisms in 9 out of the
148 motifs were significantly associated with consistent
transcriptional differences (5 motifs were significantly asso-
ciated with increased expression and 4 motifs were signif-
icantly associated with decreased expression; table 2 and
fig. 4).

Features Associated with Transcriptional Divergence

Finally, we investigated what characteristics were associated
with high expression divergence. As a measure of expres-
sion divergence between strains, we calculated the average
pairwise difference in expression between strains. We first
tested whether the absolute value of the –log(NI) for
motifs in each region was associated with expression diver-
gence. We used the absolute value so that any region under
either positive or negative selection would have a value
greater than zero and regions under no selection would
be closer to zero. We found a negative correlation
(�=�0.07, P = 2.43� 10�6, Spearman rank-sum test), dem-
onstrating that regions under stronger selection showed less
expression divergence. We also tested whether nucleotide
diversity (�) within predicted motifs was associated with
expression divergence. We found a positive correlation
(�= 0.10, P = 6.84� 10�14, Spearman rank-sum test), illus-
trating that higher nucleotide diversity was associated with
higher expression divergence between strains. This correla-
tion was still significant after controlling for the presence or
absence of TATA box and for the nucleosome occupancy
upstream of each gene (see Materials and Methods).

Discussion
Interpreting noncoding variation is challenging yet vital for
identifying causal regulatory variation, delimiting the contri-
bution of expression variation to phenotypic diversity and
evolutionary diversification, and elucidating the molecular
mechanisms through which noncoding variation acts. By fo-
cusing on interpretable noncoding variation, namely variants

Table 1. High Confidence Regulatory Polymorphisms.

Motif Downstream
Gene

Log(Difference
in Expression)

Distance
Upstream

of Gene (bp)

q Value

HCM1 YJL155C �0.26 300 0.04

HCM1 YEL044W �0.27 955 0.04

MOT3 YKL059C 0.29 509 0.04

PHO2 YJR108W 0.57 144 0.04

PHO2 YGL169W �0.32 381 0.04

REB1 YNL239W 0.47 239 0.04

SPT2 YEL001C 0.24 675 0.04

YAP5 YOR108W �0.59 436 0.04

CRZ1 YAL049C 0.39 146 0.06

HAL9 YPL255W �0.32 494 0.06

HAP2 YNR049C 0.27 28 0.06

HAP2 YOR071C �0.44 2,828 0.06

PHO2 YPR119W �0.12 331 0.06

RAP1 YPL108W 0.48 407 0.06

REB1 YNL240C 0.59 352 0.06

STE12 YKL108W �0.28 91 0.06

FHL1 YJL094C �0.77 148 0.07

HAP2 YBR222C 0.39 245 0.07

HAP2 YGL117W �0.71 1,245 0.07

MOT3 YLR152C �0.67 242 0.07

ABF2 YPL167C �0.24 116 0.09

YAP3 YLR007W �0.16 366 0.09
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within known motifs for DNA-binding proteins, we were able
to perform detailed evolutionary and statistical analyses on
the evolutionary pressures acting at these motifs and the
functional consequences of putative regulatory variation.

We first addressed the evolutionary pressures affecting
motif diversity and divergence, and found that motifs are
generally subject to purifying selection. These results are
broadly consistent with previous analyses demonstrating pu-
rifying selection acting on yeast promoter and 30-untranslated
regions (Mustonen and Lassig 2005; Ronald and Akey 2007;
Chen et al. 2010). Similarly, studies in humans have found
decreased nucleotide diversity in open chromatin regions
(Thurman et al. 2012; Vernot et al. 2012) and have correlated
transcription factor occupied sites with higher conservation
across multiple species (Neph et al. 2012). Similarly, we found

A

B

FIG. 3. Examples of motifs effecting gene expression. (A) NAR1 expression in strains containing the two labeled sequences at the motif REB1 in the
upstream intergenic region. Substitutions to the consensus motif sequence for REB1 are marked in blue. A sequence logo for REB1 representing the
PSSM is shown in the upper left corner. (B) YER186C expression in strains containing the two labeled sequences at the motif AFT2 in the upstream
intergenic regions. Substitutions to the consensus motif sequence are marked in blue. A sequence logo for AFT2 representing the PSSM is shown to the
upper left of the plot.

Table 2. Motifs Associated with Consistent Expression Differences.

Motif Number of Genes
Containing

Upstream Motif

Number of
Polymorphic

Motifs

Average
Effect

Size (SD)a

GAL4 5 2 0.86

SUT2 17 3 1.08

LEU3 48 7 0.47

RGT1 75 14 �0.43

UGA3 87 19 �0.40

MET4 88 28 �0.32

SWI4 104 17 0.58

RDR1 106 25 0.25

TOS8 265 70 �0.28

aMeasured as the difference in expression Z scores between motif presence and
absence averaged across genes.
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that experimentally validated sites were subject to stronger
purifying selection. Interestingly, we found that the level of
purifying selection acting on all predicted motifs was still
quite strong. We also found that the selection on experimen-
tally determined sites and on predicted sites was stronger
than that on nonsynonymous variants. One possible expla-
nation for this is that a smaller proportion of nonsynonymous
sites will actually affect gene function compared with the
proportion needed to disrupt a motif. It is also possible
that by testing only motifs within regions which could be
aligned between the two species, we may be biased toward
detecting conserved motifs. In comparison with other species,
it is interesting that similar studies in Drosophila have found
widespread evidence of adaptive evolution in noncoding re-
gions (Andolfatto 2005), whereas we found little evidence for
adaptive evolution. We speculate that these differences in the
tempo and mode of noncoding evolution between species
may be due, at least in part, to differences in effective popu-
lation size. We also found that while a majority of motifs are
under purifying selection, a subset is evolving neutrally. This
may suggest that the position weight matrices for these
motifs are ineffective at identifying functional binding sites
or that, alternatively, these motifs are in general less
constrained.

To investigate the effects of motif changes on transcrip-
tional variation, we characterized gene expression differences
among 22 strains. We identified nine motifs acting consis-
tently as activators or repressors across a majority of genes
they regulated. These transcription factors are involved in
diverse processes, but it appears that they are broadly
active in phosphate-limiting conditions. We also identified
30 genes where one or more motifs were associated with

gene expression variation. Approximately one-third of these
genes contained multiple motifs associated with expression
variance at that gene, making it difficult to identify the causal
variant, though it is also possible that there may be multiple
motif changes contributing to gene expression differences at
these loci, as observed previously (Prud’homme et al. 2006;
Tao et al. 2006). In addition, we were able to identify 22 genes
with only one motif associated with expression differences.
Although for all but one of these there were other SNPs in
strong LD with the associated motif in the intergenic region,
SNPs that fall within motifs are a strong candidate for being a
causal SNP because of their potential functional role.

We found that conservation scores across species were
significantly higher at motifs associated with expression dif-
ferences than at motifs not associated with expression differ-
ences, suggesting that cross-species conservation is useful for
fine-scale mapping causal regulatory variation. In addition,
measures of constraint within species that combine informa-
tion across multiple motifs in a region were useful for pre-
dicting more general patterns of expression divergence.
Specifically, we found that regions with less constrained
motifs as measured by the �log(NI) and nucleotide diver-
gence were more likely to have higher expression divergence,
although the magnitude of the correlation was modest.

There are several limitations to our study design. Because
we are using computationally predicted motifs, not all are
actually used in vivo; however, by using stringent cutoffs for
calling motifs (see Materials and Methods), we attempted to
collate a high confidence set of predicted motifs on which to
perform our analyses. The evolutionary analyses also suggest
that we are identifying active sites that are under constraint.
In addition, our study only tests the effects of motif variation

FIG. 4. Effects of variants at specific motifs on gene expression. For each motif, a box plot of the difference in expression Z scores between strains
containing the motif and strains not containing the motif at all genes with a variable motif are plotted. Motifs are sorted by mean difference in
expression. Motifs significant in our test for genome-wide differences in expression for showing lower expression when the motif is present are colored
in blue, and motifs significant for showing greater expression when the motif is present are colored in magenta.
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on gene expression in one experimental condition. Finally, as
our sample size was small, we are underpowered to detect
associations attributable to rare variants or variants with small
effect sizes (supplementary table S4, Supplementary Material
online).

In summary, our approach demonstrates the utility of
using motif predictions in conjunction with functional geno-
mics data for identifying functional noncoding sequence var-
iation and DNA-binding proteins that have significant effects
on gene expression. In the future, it will be important to
integrate additional types of data, such as in vivo DNA-bind-
ing protein information and ChIP-Seq data, to facilitate the
interpretation of noncoding variation, the identification of
causal noncoding variants, and the correlation of transcrip-
tional variation to phenotypic diversity. Such integrative ge-
nomics analyses are likely to play a key role in ultimately
developing predictive models to distinguish functionally im-
portant noncoding variation from functionally and pheno-
typically benign variants.

Materials and Methods

Sequence Data and Alignments

We obtained sequence data and whole genome alignments
for 37 S. cerevisiae strains and the S. paradoxus reference se-
quence (CBS432-0809) from the Saccharomyces Genome
Resequencing Project (Liti et al. 2009). The alignment be-
tween S. cerevisiae and S. paradoxus was done by repeating
masking the reference S. cerevisiae genome and CBS432. The
programs LASTZ (Harris 2007) and TBA (Blanchette 2004)
were used to construct the alignment. Substitution scoring
parameters for LASTZ alignments were inferred using two
S. cerevisiae strains (the reference strain and RM11_1A). For
all further analyses, we excluded intergenic regions that
aligned to more than one contiguous block in S. cerevisiae.

Motif Analysis

We searched all intergenic regions for the 37 strains and
S. paradoxus for each of the 177 known DNA binding
motifs on both strands using Position-specific site matrices
obtained from JASPAR and converted to PWMs (Bryne et al.
2008). Note that these matrices come from experimental
studies and are not ascertained based on conservation
across species. In all further analyses, we did not include
sites with missing data in 1 or more of the strains, or sites
that were called due to indels to mitigate alignment errors.
Motifs were called if they had 90% of the observed maximum
weight matrix score.

For the experimentally determined sites, we used binding
sites identified by ChIP-chip (MacIsaac et al. 2006) that were
significant at P< 0.001 and not subject to conservation cri-
teria. This list consists of 9,708 motif sites.

MK Test Measurements

We calculated the NI as: NI ¼ DnPs

DsPn
(Rand and Kann 1996).

Here, D is the count of polymorphic sites between S. cerevisiae
and S. paradoxus, and P is the count of polymorphic sites
(frequency greater than 5%) between the S. cerevisiae strains,

n = neutral sites (synonymous sites), and s = putative selected
sites. When calculating the NI for each intergenic region, we
used the synonymous sites from immediately flanking genes.
For bootstrapping, we resampled 1,000 times from the data
for each intergenic region.

RNA Mapping and Normalization

Raw RNA reads were obtained from Skelly et al. (submitted).
We mapped RNA-Seq reads to the S288c reference genome
(UCSC sacCer2) using the program BFAST version 0.6.4e
(Homer et al. 2009) with options –K 100 and –M 500 to
bfast match. We aligned colorspace reads using a main
index with mask 111111111111111111 (hash width 14) and
secondary indexes with masks 11111011101110101001010
11011111, 1011110101101001011000011010001111111, and
10111001101001100100111101010001011111 (all using hash
width 14). We output the results in SAM format and con-
verted to BAM format using samtools (Li et al. 2009). We
computed read depth across genes using bedtools version
2.15.0 (Quinlan and Hall 2010).

We normalized counts for each gene by the number of
total read counts for that strain. We then carried out a
median normalization step to normalize across flow cells
(Pickrell et al. 2010). After this step, we removed any genes
that had no counts across any strain. Finally, we fit a linear
model of the form log(normalized_counts) ~ batch + flow
cell + strain + significant surrogate variables. We used the
R package sva to calculate surrogate variables, which revealed
four significant surrogate variables (Leek and Storey 2007).
Further tests used the residuals from this model.

Assessing Differential Expression across Strains

We used a random effects model to test for a strain effect
using the R package lme4, using the Maximum Likelihood
method and calculating P values using the �2 distribution
(R Development Core Team 2011). We assigned q values by
permuting the strain assignments 1,000 times and repeating
the analysis, calculating the empirical P value from this distri-
bution, then using the R package q value to assign q values
(Storey and Tibshirani 2003).

Testing for Motif Effects on Expression at One Gene

For each gene with a variable motif, we tested the hypothesis
that there was a difference in expression between strains with
the motif present and strains with the motif absent, using the
program EMMA to control for population structure (Kang
et al. 2008). P values were again assigned by permuting the
motif presence/absence labels 1,000 times, and calculating q
values as earlier.

Testing for Motif Effects on Expression across All
Genes

For each gene, we converted the normalized expression values
to Z scores. For each motif, we then identified genes that had
a variable motif upstream. We tested for differential expres-
sion by combining expression Z scores from all strains with
the motif present, and compared them to Z scores from
strains with the motif absent, combining these Z scores
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across the genes identified earlier. We tested for differential
expression using a t test, and determined q values by permut-
ing the labels of present/absent for each gene 1,000 times.

Simulations

The simulations were done as previously described (Connelly
and Akey 2012). Briefly, we chose 1,000 random SNPs, which
fell within genes or 1,000 bp up- or downstream of genes and
which had a minor allele frequency of at least 3 out of 22 as
causal SNPs and simulated data based on the genotype at
each SNP. We generated simulated data of three effect
sizes, 25% of variance in phenotype explained by the
genotype, 50% of variance explained by the genotype, and
75% of the variance explained by the genotype. This was equal
to a fixed effect of k = 1.64, 2.85, and 4.885 times the standard
deviation, respectively, solving for k using the formula percent
variance explained = p(1� p)k2/(p(1� p)k2 + 1� 1/n) =
~1/(1 + 1/(p[1� p]k2) where k is the fixed effect of x
times the standard deviation, p is the frequency of the poly-
morphism with the fixed effect, and n is the number of indi-
viduals (Yu et al. 2006). To assess power, we tested for
association between the simulated data and the genotype
at the causal variant for each of the 1,000 simulations using
EMMA (Kang et al. 2008). To assess the type I error rate, we
chose 1,000 random SNPs and asked how often they showed
association with any of the 1,000 simulated data sets.

Motif Conservation

We obtained phastCons scores from the UCSC genome
browser for each position in the S288c genome (Siepel et al.
2005). We used the P values from the gene-specific test above
to identify motifs nominally associated with expression differ-
ences among strains (P� 0.05, n = 1,039). To assess signifi-
cance of polymorphic motif conservation scores, we
generated a null distribution by calculating mean conserva-
tion from 1,000 randomly selected motifs that are not asso-
ciated with expression differences (P> 0.05).

Nucleotide Diversity within Motifs and Expression
Divergence

We obtained calls for the presence or absence of a TATA box
upstream of each gene (Tirosh et al. 2006). For a measure-
ment of nucleosome occupancy, we used the genome-wide
nucleosome occupancy data (Lee et al. 2007) and calculated
nucleosome occupancy 100 bp upstream of transcription
start sites (Zhang and Dietrich 2005), a similar approach to
that taken by Tirosh and Barkai (2008). We used a linear
model to test for the effect of nucleosome occupancy,
TATA box presence, and nucleotide diversity within motifs
on expression divergence.

Supplementary Material
Supplementary figures S1 and S2 and tables S1–S4 are avail-
able at Molecular Biology and Evolution online (http://www.
mbe.oxfordjournals.org/).
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