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Applying Multiplex Assays to Understand 
Variation in Pharmacogenes
Melissa Chiasson1, Maitreya J. Dunham1,2 , Allan E. Rettie3 and Douglas M. Fowler1,2,4,*

Genome sequencing has enabled the detection of un-
precedented numbers of new pharmacogene variants. 
However, interpreting how these variants affect pharma-
cogene biology and ultimately drug response is difficult. 
Multiplexed assays for variant effects (MAVEs) leverage 
high throughput DNA sequencing to assess the functional 
consequences of thousands of variants simultaneously. 
We discuss the utility of large- scale functional data in 
pharmacogene variant interpretation and suggest that 
implementing MAVEs could empower pharmacogenetics 
and improve patient care.

Genomes can now be sequenced with ease, but under-
standing the effect of the variants found therein poses a major 
challenge. Each uninterpreted variant represents a missed oppor-
tunity to improve patient outcomes. For example, the Clinical 
Pharmacogenetics Implementation Consortium (CPIC) lists 
358 gene– drug pairs in which variation can change drug re-
sponse. For 63 of these 358 pairs, CPIC has issued guidelines 
regarding clinical interventions that may improve patient care. 
These guidelines focus on common variants (minor allele fre-
quencies, typically  >5%) whose clinical consequences are most 
clearly documented. However, understanding the effects of rare 
variants (minor allele frequency <0.5–1%) is also essential, and 
this goal is far from realized.

The magnitude of the unmet need requires consideration 
of the totality of rare variation that will be identified as se-
quencing becomes more common. As of February 2019, the 
Genome Aggregation Database contained ~  125,000 exomes 
and ~  15,000 genomes, which included 404 rare coding sin-
gle-nucleotide variants in cytochrome P450 (CYP)2C9 alone, 
212 of which were singletons. Only 55 of these variants were in 
the PharmVar database (accessed February 10, 2019), and only 
about a dozen have been functionally annotated. Undoubtedly, 
as sequencing continues, many more CYP2C9 variants will be 
identified. This issue is not confined to CYP2C9: 731 novel 
nonsynonymous variants in 12 CYP genes were discovered in 
the exomes of ~ 6,500 individuals.1 Approximately 10% of indi-
viduals carried at least one of these potentially deleterious novel 
variants. These results, obtained from a handful of genes in a 

few individuals relative to the number that will ultimately be 
sequenced, illustrate that an onslaught of new and potentially 
important variants is coming.

THE CHALLENGE OF VARIANT FUNCTIONAL ANALYSIS
Current methods for determining the impact of pharmacogene 
variants fall into two categories. Biochemical assays using known 
substrates for drug disposition genes can reveal variant functional 
consequences. However, this approach is limited in scale to tens 
or hundreds of missense variants. Computational predictions can 
scale to all possible variants of a gene of interest but are of lim-
ited value as they often produce incorrect or conflicting results. 
For example, the CYP2C9*3 variant, present in ~ 7% of people of 
European ancestry, confers ~ 90% loss of function according to 
experimental data2 but is predicted computationally to be benign. 
To overcome the limitations of biochemical assays and computa-
tional predictions, an experimental approach to assess pharmaco-
gene variants on a massive scale is needed.

MAVES CAN CHARACTERIZE TENS OF THOUSANDS OF 
VARIANTS SIMULTANEOUSLY
A MAVE measures the functional consequences of a large library 
of genetic variants simultaneously.3,4 MAVEs can be applied to a 
wide range of genetic elements, including mRNA untranslated re-
gions (UTRs), promoters, enhancers, splice sites, and proteins. The 
result of a MAVE is a variant effect map that reveals the functional 
consequences of all possible single variants in the genetic element.

All MAVEs share the same basic design (Figure 1a, reviewed 
in refs. 3,4). First, a pooled library of variants is constructed 
either by polymerase chain reaction- based mutagenesis or syn-
thesized oligo arrays programmed with mutations of interest. 
The library is then introduced into an experimental system, 
typically yeast or cultured human cells. Each cell must express 
a single variant to maintain the link between variant sequence 
and phenotype. For example, in human cells, expression of a 
single variant is typically achieved using lentiviral transduction 
or recombinase- based systems. Cells expressing the library of in-
terest are then assayed for a phenotype of interest, like growth 
or reporter activation. These assays stratify variants based on 
their phenotypic effect. For example, in a growth assay, cells 
expressing wild type (WT)- like variants grow rapidly whereas 
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cells expressing loss- of- function variants grow slowly. In a fluo-
rescent reporter assay, WT- like variants drive high fluorescence, 
whereas loss- of- function variants drive low fluorescence. Cells 
are sorted into bins according to fluorescence. High throughput 
sequencing is used to measure a variant’s frequency in the assay, 
either before and after growth or across bins. Variant frequencies 
are then used to compute effect scores.

MAVEs for coding and noncoding variants differ in the type of 
assays used. For example, noncoding MAVEs generally measure 
how variants affect expression, often by quantifying mRNA tran-
scripts or using a fluorescent reporter. Coding MAVEs measure dif-
ferent aspects of a protein’s function. For example, reporter assays 
can measure specific protein properties like abundance or substrate 
binding using fluorescent protein tags or fluorophore- labeled anti-
bodies. Growth- based assays measure each variant’s ability to drive 
cell growth, either in the context of a deletion of the genomic copy 
of the protein or by using a metabolic reporter.

MAVEs have the power to functionally annotate variants in 
many, if not most, pharmacogenes. However, achieving this goal 
will take time and effort, requiring the implementation of ex-
isting MAVEs and the development of new assays. To illustrate 
these issues, we first discuss the recent application of an MAVE to 
thiopurine methyltransferase (TPMT) and then consider other 
pharmacogenes that could benefit most from MAVEs.

ANALYZING TPMT ABUNDANCE REVEALS NEW VARIANTS 
THAT CONFER THIOPURINE TOXICITY RISK
TPMT inactivates thiopurine drugs commonly used to treat 
cancer and autoimmune diseases, including 6- thioguanine and 
6- mercaptopurine. Thus, TPMT reduces the quantity of drug 
available for transformation into thioguanine nucleotides, which 
inhibit de novo purine synthesis. During routine dosing with thio-
purines, TPMT deficiency results in high levels of thioguanine 
nucleotides and, ultimately, hematopoietic toxicity. Three vari-
ants, A80P, A154T, and Y240C, are known to lead to decreased 
TPMT function. CPIC recommends testing for these three vari-
ants, enabling patients to be classified as normal, intermediate, 
or poor metabolizers based on diplotype, with doses adjusted 
accordingly.

Previously, we applied Variant Abundance by Massively Parallel 
sequencing (VAMP- seq), a generalizable, multiplex assay for mea-
suring protein abundance inside cells, to TPMT5 (Figure 1b). We 
generated abundance scores for 3,689 of the 4,655 possible variants 

(Figure 1c–e). A80P, A154T, and Y240C were all low-abundance 
variants, in accordance with their poor metabolizer status. In con-
trast, four rare variants from a clinical study of acute lymphoblastic 
leukemia (S125L, Q179H, R215H, and R226Q) were all WT- like 
in abundance, and patients with these variants tolerated higher 
doses of 6- mercaptopurine better than those with A80P, A154T, or 
Y240C. We then identified 31 reduced-abundance variants in gno-
mAD and suggested that patients with these variants could have 
increased risk for thiopurine toxicity. Since our publication of the 
TPMT variant abundance map, seven new TPMT variants have 
been added to gnomAD: K77E, W78R, G83V, L155S, P160A, 
K191E, and C216Y. VAMP- seq data indicate that K77E, W78R, 
G83V, L155S, and K191E are of low abundance relative to WT 
(Figure 1f). Accordingly, these variants might confer drug sensitiv-
ity in patients who carry them.

Thus, protein abundance is a useful phenotype for identifying 
loss- of- function variants. We also anticipate that measurement 
of protein activity will be necessary for many pharmacogenes. 
Fortunately, in some cases, existing low- throughput activity assays 
can be adapted. For example, a reporter cell line developed to mea-
sure vitamin K oxidoreductase (VKOR) activity6 could be com-
bined with a variant library to assess activity of all VKOR missense 
variants. Because some VKOR variants confer resistance to warfa-
rin, cells could also be treated with warfarin to reveal the relation-
ship between activity and resistance. Ultimately, the activity and 
resistance scores from such an assay could be used to help predict a 
patient’s warfarin dose based on their VKOR sequence.

MAVES COULD AID PHARMACOGENE VARIANT 
INTERPRETATION
Including TPMT, CPIC lists 127 genes that have differing lev-
els of evidence for identification as an actionable pharmacogene. 
There are 5,132,280 possible single-nucleotide variants that exist 
among these genes. Assaying such a large number of variants is 
possible but daunting. Thus, we suggest prioritization of the most 
promising pharmacogenes.

We focused solely on missense variants for this analysis; how-
ever, many pharmacogenes have noncoding variants that contrib-
ute to drug response and could be assayed with an appropriately 
designed noncoding MAVE. First, we restricted our analysis to the 
31 genes that are designated as CPIC level A or B where genetic 
information can be used to guide drug therapy. We annotated each 
gene according to the localization of the protein it encodes, length, 

Figure 1 (a) Overview of multiplexed assays for variant effects. A library of variants of the genetic element of interest is created and 
introduced into cells. The cells are subjected to a growth- based or fluorescent reporter– based assay. High- throughput sequencing is used to 
determine the frequency of variants before and after the assay, and variant frequencies are used to calculate functional scores.  
(b) Variant Abundance by Massively Parallel sequencing uses a green fluorescent protein (GFP) fusion reporter to measure steady- state variant 
abundance. GFP was fused N- terminally to a library of thiopurine methyltransferase (TPMT) variants; mCherry was used as a transcriptional 
control. This library was introduced into HEK293T cells using a serine integrase landing pad system such that only one variant is expressed 
per cell. Cells were sorted based on their fluorescence into four bins. High- throughput sequencing was used to determine the frequency 
of every variant in each bin. Frequencies were then converted to abundance scores. (c) A flow cytometry plot of wild-type (WT) TPMT (red) 
and three high- frequency variants known to be low abundance (blue): A80P, A154T, and Y240C. The library of TPMT variants and bins used 
for sorting are shown (gray). (d) Density plot of abundance scores, with dotted blue line showing distribution of nonsense variants and red 
dotted line showing synonymous variants. The missense variant distribution is shaded from blue (low abundance) to red (high abundance). (e) 
Heatmap of TPMT abundance scores shaded from blue (low abundance) to red (high abundance); gray indicates missing data. (f) Abundance 
scores from four replicates for five new TPMT variants found in gnomAD.
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Table 1 Thirty- one genes designated by CPIC as A or B level genes, along with factors to consider when designing MAVEs

Gene Drug(s)

Length 
(amino 
acids)

Total possible 
single amino acid 

variants

Missense 
variants in 
gnomAD

Missense 
variants in 
PharmVar Localization

MT-RNR1 Aminoglycoside antibacterials 16 300 0 0 Secreted

NUDT15 Azathioprine, mercaptopurine, 
thioguanine

164 3,260 83 12 Cytoplasm

IFNL3 Peginterferon alfa- 2a, 
Peginterferon alfa- 2b, Ribavirin

196 3,900 152 0 Secreted

HPRT1 Mycophenolic acid 218 4,340 20 0 Cytoplasm

TPMT Azathioprine, mercaptopurine, 
thioguanine

245 4,880 119 0 Cytoplasm

OTC Valproic acid 354 7,060 88 0 Mitochondrion matrix

HLA-B Abacavir, allopurinol, 
carbamazepine, oxcarbazepine

362 7,220 180 0 Membrane; single- pass type I 
membrane protein

HLA-A Carbamazepine, allopurinol 365 7,280 194 0 Membrane; single- pass type I 
membrane protein

ASS1 Valproic acid 412 8,220 211 0 Cytoplasm

ASL Valproic acid 464 9,260 242 0 Cytoplasm, extracellular 
exosome

CYP2C9 Phenytoin, warfarin, 
acenocoumarol

490 9,780 381 55 Endoplasmic reticulum 
membrane, peripheral 

membrane

CYP2C19 Amitriptyline, clopidogrel, 
citalopram, voriconazole

490 9,780 375 5 Endoplasmic reticulum 
membrane, peripheral 

membrane

CYP2B6 Efavirenz, methadone 491 9,800 331 0 Endoplasmic reticulum 
membrane, peripheral 

membrane

CYP2D6 Codeine, oxycodone, tamoxifen, 
tramadol

497 9,920 374 30 Endoplasmic reticulum 
membrane, peripheral 

membrane

CYP3A5 Tacrolimus 502 10,020 215 11 Endoplasmic reticulum 
membrane, peripheral 

membrane

G6PD Rasburicase, chloramphenicol, 
chloroquine, ciprofloxacin

515 10,280 171 0 Cytoplasm, extracellular 
exosome, nucleus

CYP4F2 Warfarin, acenocoumarol 520 10,380 344 2 Endoplasmic reticulum 
membrane, peripheral 

membrane

UGT1A1 Atazanavir, irinotecan, 
belinostat

533 10,640 308 0 Endoplasmic reticulum 
membrane; single- pass 

membrane protein

NAGS Carglumic acid 534 10,660 216 0 Mitochondrion matrix

GBA Velaglucerase alfa 536 10,700 247 0 Lysosome membrane, 
peripheral membrane protein

SLCO1B1 Simvastatin, cerivastatin 691 13,800 399 0 Basolateral cell membrane, 
multi  pass membrane protein

DPYD Capecitabine, fluorouracil 1,025 20,480 566 0 Cytoplasm

ABL2 Valproic acid 1,182 23,620 509 0 Cytoplasm, cytoskeleton

POLG Valproic acid 1,239 24,760 762 0 Mitochondrion, mitochondrion 
matrix, mitochondrion nucleoid

ABCB1 Antidepressants, digoxin 1,280 25,580 578 0 Cell membrane, multi  pass 
membrane protein

CFTR Ivacaftor 1,480 29,580 991 0 Apical cell membrane

CPS1 Valproic acid 1,500 29,980 679 0 Mitochondrion, nucleus, 
nucleolus

(Continues)
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number of missense variants already in gnomAD, and number of 
variants registered in PharmVar (Table 1).

Among this list, small proteins should be given high priority, be-
cause they have fewer possible variants and are, thus, easier to assay. 
Larger proteins affecting dosing of multiple, widely prescribed drugs 
should also be prioritized, as they impact many patients. For these, 
we suggest focusing initial efforts on functionally important do-
mains. All the genes have tens to thousands of variants deposited in 
gnomAD; however, most genes do not have any variants deposited 
yet in PharmVar. Therefore, concentrating on the genes that have the 
greatest number of rare variants in gnomAD but no information in 
PharmVar would yield new insight. Two pharmacogenes, IFN3 and 
MT-RNR1, encode secreted proteins requiring new assays that main-
tain the sequence- phenotype link. In addition to these factors, ana-
lyzing published clustered regularly interspaced short palindromic 
repeats (CRISPR) screen data will identify which of these genes 
cause growth defects in a relevant cell line; growth- based MAVEs 
would be an attractive starting point for these. For the remainder, we 
suggest applying reporter- based assays, such as VAMP- seq.

Despite their promise, MAVEs also have limitations. MAVEs 
often take the genetic element of interest out of its endogenous ge-
nomic or cellular context and, thus, demand careful validation of 
results. Data generated from MAVEs, although comprehensive, can 
be noisy. Thus, adequate replication is required to improve mea-
surement accuracy and facilitate error estimation. Finally, MAVEs 
generally focus on one or a few experimental conditions and so may 
not fully capture condition- dependent effects. For pharmacogenes, 
therefore, it will be critical to evaluate variants in physiologically 
relevant concentration, time, and drug contexts.

In summary, a community- wide effort to apply MAVEs to high- 
priority pharmacogenes would result in variant-effect maps that 
could aid in the interpretation of variants seen in the clinic. As 

pharmacogene variant-effect maps are produced, they will yield a 
better understanding of pharmacogene biology and create oppor-
tunities for more rigorous, data- driven customization of patient 
treatment.
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Gene Drug(s)

Length 
(amino 
acids)

Total possible 
single amino acid 

variants

Missense 
variants in 
gnomAD

Missense 
variants in 
PharmVar Localization

CACNA1S Desflurane, enflurane, 
isoflurane, halothane

1,873 37,440 1,071 0 Cell membrane, sarcolemma, 
T- tubule, multi pass membrane 

protein

SCN1A Carbamazepine 2,009 40,160 587 0 Cell membrane, multi  pass 
membrane protein

RYR1 Desflurane, enflurane, 
isoflurane, halothane

5,038 100,740 2,663 0 Sarcoplasmic reticulum 
membrane, multi  pass 

membrane protein

CPIC, Clinical Pharmacogenetics Implementation Consortium; CYP, cytochrome P450; MAVEs, multiplexed assays for variant effects; TPMT, thiopurine 
methyltransferase.
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