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ABSTRACT
Motivation: Chromosomal copy number changes
(aneuploidies) are common in cell populations that undergo
multiple cell divisions including yeast strains, cell lines and
tumor cells. Identification of aneuploidies is critical in evolution-
ary studies, where changes in copy number serve an adaptive
purpose, as well as in cancer studies, where amplifications and
deletions of chromosomal regions have been identified as a
major pathogenetic mechanism. Aneuploidies can be studied
on whole-genome level using array CGH (a microarray-based
method that measures the DNA content), but their presence
also affects gene expression. In gene expression microarray
analysis, identification of copy number changes is especially
important in preventing aberrant biological conclusions based
on spurious gene expression correlation or masked pheno-
types that arise due to aneuploidies. Previously suggested
approaches for aneuploidy detection from microarray data
mostly focus on array CGH, address only whole-chromosome
or whole-arm copy number changes, and rely on thresholds
or other heuristics, making them unsuitable for fully auto-
mated general application to gene expression datasets. There
is a need for a general and robust method for identification
of aneuploidies of any size from both array CGH and gene
expression microarray data.
Results: We present ChARM (Chromosomal Aberra-
tion Region Miner), a robust and accurate expectation–
maximization based method for identification of segmental
aneuploidies (partial chromosome changes) from gene
expression and array CGH microarray data. Systematic eval-
uation of the algorithm on synthetic and biological data shows
that the method is robust to noise, aneuploidal segment size
and P -value cutoff. Using our approach, we identify known
chromosomal changes and predict novel potential segmental
aneuploidies in commonly used yeast deletion strains and
in breast cancer. ChARM can be routinely used to identify
aneuploidies in array CGH datasets and to screen gene
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expression data for aneuploidies or array biases. Our meth-
odology is sensitive enough to detect statistically significant
and biologically relevant aneuploidies even when expression
or DNA content changes are subtle as in mixed populations
of cells.
Availability: Code available by request from the authors
and on Web supplement at http://function.cs.princeton.
edu/ChARM/
Contact: ogt@cs.princeton.edu

INTRODUCTION
Chromosomal amplifications, deletions and rearrangements
are thought to play important evolutionary roles in speci-
ation (Fischer et al., 2000) and adaptive mutation in yeast
and microbial populations (Hendrickson et al., 2002; Dunham
et al., 2002), and constitute a key mechanism in can-
cer progression (Cahill et al., 1999; Phillips et al., 2001).
Aneuploidies are especially common in cell populations that
undergo multiple cell divisions such as laboratory strains or
cell lines, and the presence of amplifications or deletions of
whole chromosomes or their parts (segmental aneuploidies)
can have substantial effects on gene expression (Fritz et al.,
2002; Haddad et al., 2002; Hughes et al., 2000b). Thus, iden-
tification of aneuploidies is important in cancer pathogenesis
and molecular evolution studies, as well as in every genome-
scale gene expression microarray experiment because copy
number changes can alter expression profiles and result in
spurious correlations of functionally unrelated genes.

Recent developments in microarray technology have
enabled genome-wide investigations of copy-number changes
through array-based comparative genomic hybridization
(array CGH), where differentially labeled sample and ref-
erence DNA are hybridized to DNA microarrays (Pinkel
et al., 1998; Pollack et al., 1999). This technology has proven
effective in identifying aneuploidies in tumor cells (Gray and
Collins, 2000; Phillips et al., 2001; Wilhelm et al., 2002; Linn
et al., 2003), experimental evolution studies (Dunham et al.,
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2002) and in yeast strains (Hughes et al., 2000a; Pérez-Ortín
et al., 2002). Routine application of array CGH to every strain
or tissue used in gene expression studies is unfortunately not
feasible. However, several studies have demonstrated that the
chromosomal abnormalities correlate with spatial biases in
gene expression along the chromosomes (Pollack et al., 2002;
Fritz et al., 2002; Haddad et al., 2002; Hughes et al., 2000b;
Linn et al., 2003; Mukasa et al., 2002; Phillips et al., 2001;
Virtaneva et al., 2001). For example, Pollack et al. (1999)
estimate that 62% of highly amplified genes in 37 breast cancer
tumors demonstrate moderately or highly elevated expres-
sion. Thus, aneuploidies can be detected in gene expression
or array CGH microarray data, and it is necessary to develop
analysis methods that can accurately identify chromosomal
abnormalities based on either.

Accurate identification of aneuploidies from thousands
of array CGH or gene expression measurements requires
robust computational methods. Most array CGH data
analyses involve heuristics and threshold-based methods
(Dunham et al., 2002; Hughes et al., 2000b; Pollack et al.,
2002). Recently, Autio et al. (2003) presented a dynamic
programming-based approach to identifying copy number
changes from array CGH data, which addressed the prob-
lem algorithmically for CGH data but lacked significance
analysis. Accurate identification of potential copy num-
ber changes based on gene expression data is even more
challenging because of mRNA expression levels reflect tran-
scriptional regulation as well as DNA copy number. Previous
approaches for aneuploidy detection from gene expression
data focus only on whole-chromosome or chromosomal-arm
copy number changes, and most methods are based on heur-
istics or dataset-specific thresholds. In the most sophisticated
method to date, Crawley and Furge (2002) employ a sign test
for detecting whole chromosome (or whole arm) expression
biases. Hughes et al. (2000b) use a simpler error-weighted
mean approach for whole-chromosome aneuploidy detec-
tion and a heuristic scanning method that identifies adjacent
occurrences of 4 over or under-expressed genes as poten-
tial segmental aneuploidies. A visualization-based imbalance
detection scheme for identifying biases common in cancer
specimens as compared to normal samples is proposed by
Kano et al. (2003). These methods address the problem of
whole chromosome or chromosomal-arm copy changes, but
the issue of robust identification of segmental aneuploidies
remains open.

Here, we present ChARM, a robust and accurate statist-
ical method for the identification of segmental aneuploidies
from gene expression or array CGH microarray data. Our
technique provides three key improvements over previously
suggested approaches. First, nearly all current aneuploidy
detection schemes for expression data rely on thresholds for
defining significant over- and under-expression levels (some
requiring up to a 1.7–1.8-fold change). Recent studies sug-
gest, however, that expression level changes do not always

directly reflect copy change proportions, and thresholds
determined for one dataset often will not generalize to others
(Phillips et al., 2001). Our method is statistical, and there-
fore generalizes to different datasets, microarray platforms
and organisms. Second, we focus on the problem of detect-
ing segmental aneuploidy, which is generally more difficult
than detecting whole-chromosome aneuploidy for which the
methods developed by Hughes et al. (2000b) or Crawley and
Furge (2002) are effective. Third, our method is general and
performs well with both gene expression and array CGH data.

ChARM employs an edge detection filter that identifies
potentially aneuploid regions, an EM algorithm that finds
maximum-likelihood breakpoints based on a local search in
these potential regions, and a statistical analysis that deter-
mines which predicted aneuploidies correspond to statistically
significant biases as opposed to experimental noise. Our
scheme can accurately identify known aneuploidies in bio-
logical gene expression or array CGH data (Hughes et al.,
2000b), and rigorous performance analysis with synthetic data
demonstrates that the method is robust to noise and aneuploidy
size and thus can generalize to other microarray datasets.
Applying ChARM to 300 gene expression profiles of laborat-
ory yeast strains, we identify multiple previously unknown
aneuploidies, most of which are supported using current
biological knowledge of yeast chromosomal rearrangement
mechanisms. Our analysis of breast cancer array CGH and
gene expression microarray data identifies both known and
novel areas of chromosomal instability and reveals two groups
of immune system genes on different chromosomes that
are overexpressed and often amplified in a subset of breast
tumors. This novel result may, upon experimental verification,
contribute to understanding of how cancers escape immune
response.

METHODS
ChARM is composed of three sub-systems: an edge detection
filter that identifies points on chromosomes where poten-
tial aneuploidies start or end, an EM-based edge-placement
algorithm that statistically optimizes these start and end loca-
tions and a window significance test that determines whether
predicted amplifications and deletions are statistically signi-
ficant or are artifacts of noise (Fig. 1). The EM algorithm has a
well-known tendency to find local rather than global maxima,
but this three-stage structure is useful in setting initial con-
ditions that ensure meaningful convergence. All three stages
assume input in the form of array CGH or gene expression log
ratios arranged in the order in which the corresponding genes
appear along a single chromosome.

Edge detection filter
The edge detection filter estimates locations along the chro-
mosome where abrupt changes in gene expression occur. This
is accomplished by a simple cascade of a non-linear median
filter, a linear smoothing filter and a linear differentiator
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Fig. 1. Three-stage segmental aneuploidy detection scheme. The edge detection filter estimates edge coordinates, which are then refined by
the EM edge-placement algorithm. The resulting edges serve as input to the prediction significance test that analyzes statistical significance
of spatial biases.

Fig. 2. Preliminary edge detection filtering process illustrated on gene expression data positioned along the chromosome. Bars above the
coordinate axis represent overexpression, bars below represent underexpression. The input–output relation for each of the filters is given on
the left. y[n] is the output as a function of x[n] where n refers to gene index on the chromosome and N is the window size of each filter.
Significant peaks are marked at the output of the differentiator.

(Fig. 2). The median filter functions as a high-level smoother,
removing outliers, which are common in microarray data, and
preserving only sustained changes in the input sequence. Finer
smoothing, which is a necessary pre-processing step for the
differentiator, is accomplished by a linear averaging filter with
a smaller window size. The differentiator effectively computes
the derivative over a short window flagging any substantial
changes with large peaks. These peaks and the corresponding
chromosomal locations serve as the input to the more precise
EM algorithm.

Expectation–Maximization edge-placement
algorithm
The purpose of the EM edge-placement algorithm is to provide
fine adjustments to the edge estimates from the previous fil-
ter. To facilitate convergence to statistically optimal gene
indices, each edge is surrounded by a ‘radius of influence’
(ROI), which includes an equal-length set of adjacent genes

on either side that is allowed to affect the placement at a
given iteration. Furthermore, each edge is associated with
two distributions, one for each of the two distinct regions
(left and right) it is potentially separating. Each iteration of
the algorithm consists of two stages: a typical EM clustering
stage for learning the maximum-likelihood parameters of the
two distributions for each ROI (see E-step, M-step 1 below)
and an edge-placement stage which adjusts the edge position
optimally given the learned parameters (see M-step 2 below).
Before each edge adjustment, every pair of adjacent windows1

is tested for similarity to ensure that the edge between these
windows actually separates chromosomal regions of different
copy number. The algorithm converges when all edge posi-
tions are fixed for several iterations. Each of these steps is
described in detail below.

1 We refer to the regions between any two adjacent edges or between an edge
and a chromosome end as ‘windows’.
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Update membership (E-step) Soft (fuzzy) memberships are
computed for all genes in the radius of influence of an edge and
are proportional to the probability of observing the gene given
the left and right distributions associated with that edge. Let
Gi = [gi , li] represent the log-transformed ratio (array CGH
or expression) and location of gene i, e(t)

j denote edge j , and
θ

(t)
j ,1 and θ

(t)
j ,2 the left and right edge distributions at iteration

t of the EM algorithm. Also, let rinf denote the radius of
influence. Here, we assume that the set of genes in the ROI
lie in two normal distributions, i.e. θ

(t)
j ,k is parameterized2 by

�µ(t)
j ,k , σ (t)

j ,k�. Then, the conditional probability of observing
gene i given the distribution θ

(t)
j ,k is:

P
(
Gi |θ(t)

j ,k

)
=




N
(
gi ; µ

(t)
j ,k , σ (t)

j ,k

)
for li ∈ �e(t)

j − rinf , e(t)
j

+ rinf�,

0 otherwise,

which allows us to compute the posterior probability of θ
(t)
j ,k

given gene i as:

P
(
θ

(t)
j ,k|Gi

)
=

P
[
Gi |θ(t)

j ,k

]
P

[
θ

(t−1)
j ,k

]
∑

m=1,2 P
[
Gi |θ(t)

j ,m

]
P

[
θ

(t−1)
j ,m

] ,

where

P
[
θ

(t−1)
j ,k

]
= 1

ng

ng∑
i=1

P
[
θ

(t−1)
j ,k |Gi

]

and ng is the number of genes on the chromosome of interest.

Mean and variance computation (M-step 1)

Based on the membership P
(
θ

(t)
j ,k|Gi

)
determined in the

E-step, the maximum-likelihood mean and variance paramet-
ers for the next iteration (t + 1) are computed as follows
(Dempster et al., 1976):

µ
(t+1)
j ,k =

∑ng

i=1 P
[
θ

(t)
j ,k|Gi

]
gi∑ng

i=1 P
[
θ

(t)
j ,k|Gi

]

σ
2(t+1)
j ,k =

∑ng

i=1

[
xi − µ

(t+1)
j ,k

]2
P

[
θ

(t)
j ,k|Gi

]
∑ng

i=1 P
[
θ

(t)
j ,k|Gi

]

when Gi ∼ N(µ
(t)
j , σ (t)

j ).

2 Note that in our implementation, we use normally distributed gi ’s.
Empirically, this has demonstrated adequate performance, but this approach
can be generalized to other, more accurate models as well.

Edge adjustment (M-step 2) For edge adjustment, we use
the information theoretic notion of surprise (i.e. the amount of
information learned from observing a probabilistic event). At
each iteration, we restrict the possible edge locations to only
the set of indices included in the current ROI. Each placement
implies a different clustering of the genes around the edge into
the left or right edge distributions. Each gene’s placement in
the implied cluster is treated as the observation of a random
variable whose probability distribution is the gene’s posterior
probability of being associated with that cluster. For instance,
if Gi falls in θ

(t)
j ,1 for a particular placement of the edge e

(t)
j ,

the surprise of this event is S(Gi) = − log(P (θ
(t)
j ,k|Gi)). Then,

the ‘minimum surprise’ edge placement is given by:

e
(t+1)
j = arg min

i
−

[
i−1∑
k=1

log
(
P(θ

(t)
j ,1|Gk)

)

+
2rinf+1∑

k=i

log
(
P(θ

(t)
j ,2|Gk)

)]
,

where the indices 1, . . . , (2rinf + 1) refer to those genes in the
ROI. Upon adjusting the edge placement for each window, the
window parameters are updated accordingly i.e.[

e
(t)
j → e

(t+1)
j , θ(t+1)

j ,k =
[
µ

(t+1)
j ,k , σ 2(t+1)

j ,k

]]
.

Window similarity test The window similarity test is needed
at each iteration to ensure that edges about to be adjusted
actually separate different windows with distinct chromo-
somal biases (separate aneuploidy predictions). The differ-
ence between left and right windows on either side of an edge
must exceed a minimum signal-to-noise threshold or the edge
is removed. As noted earlier, a window that extends beyond
the ROI includes all genes up to the next edge or chromosome
end. We have evaluated several parametric and non-parametric
statistical metrics for measuring the difference between two
sets of samples including t-test, non-parametric-t-tests, rank-
sum test and Kolmogorov–Smirnov test. Empirically, the
ratio of the difference in medians between two adjacent win-
dows and the pooled absolute deviation from the median has
demonstrated the best performance. Thus, we impose the fol-
lowing criterion on this modified signal-to-noise ratio (SNR)
for removing an edge [e(t)

j ] at iteration t :

SNRi,j = |medj ,1 − medj ,2|
1

nj ,1+nj ,2

(∑
k∈wj ,1

|gk − medj ,1| + ∑
k∈wj ,2

|gk − medj ,2|
)

< SNRthresh(δ̄e)

for medj ,k = median(wj ,k) where wj ,1 and wj ,2 include
all the genes in the adjacent windows with sizes nj ,1 and
nj ,2, respectively. SNRthresh is a threshold dependent on the
current convergence behavior measured by δ̄e, the average
edge position change (in gene indices) from one iteration to
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the next. We raise the minimum SNR threshold as the edge
positions begin to converge so that adjacent windows must be
‘more different’ to remain separate as edges approach their
final estimates.

Window significance analysis
Once the EM algorithm obtains precise window positions, the
significance analysis scheme determines if each window rep-
resents a statistically significant spatial bias in DNA content
or expression. We consider three statistical tests for assessing
the significance of windows identified by the EM algorithm:
a one-sample sign test, a mean permutation test and a coef-
ficient of variance permutation test, as well as combinations
of the mean and sign tests and the variance and sign tests.
The sign test is that reported by Crawley and Furge (2002)
with the modification that the threshold is chosen dynam-
ically for each chromosome to allow for identification of
biased regions exhibiting lower degrees of over or under-
expression than the 1.7–1.8-fold threshold used by others
(Crawley and Furge, 2002). Both permutation tests require
performing ∼5000 random permutations of the genes on the
chromosome and comparing the statistic (mean or variance)
obtained on the actual arrangement with the most significant
statistic for the same window size on each random permuta-
tion. We use the Bonferroni method to correct for multiple
hypothesis tests on the same chromosome. Our permutation
tests are designed specifically for the segmental aneuploidy
problem, while other methods such as the sign test or the error-
weighted mean approach proposed by Hughes et al. (2000b)
are more appropriate for chromosome-wide bias detection.

EVALUATION
To systematically assess ChARM’s accuracy and robustness,
we evaluate it using a synthetic microarray measurement error
model described below. Using this model, we assess which
window significance test yields the best performance for
aneuploidy detection and thoroughly evaluate the robustness
of our scheme. We further evaluate our scheme on biological
data (see Application to biological data section).

Synthetic data model
We generate synthetic two-color microarray data according to
the model proposed by Rocke and Durbin (2001). Under this
two-component model, reference (yR) and test (yT ) intensity
values are simulated as:

yR = αR + µReηS+ηR + εS + εR

yT = αT + µT eηS+ηT + εS + εT ,

where α is the mean background intensity, µ is the intensity
contributed by the quantity of interest and

ηS ∼ N(0, σηS
), ηR ∼ N(0, σηR

), ηT ∼ N(0, σηT
)

εS ∼ N(0, σεS
), εR ∼ N(0, σεR

), εT ∼ N(0, σεT
).

Table 1. Estimated parameters for array CGH and expression human breast
cancer data

Parameter Array CGH Microarray type
Expression

α̂T , α̂R 59.2, 45.9 399, 238
µ̂T , µ̂R 111, 113 3980, 4130
σ̂ηS

, σ̂ηT ,σ̂ηR
0.63, 0.059, 0.090 0.53, 0.17, 0.13

σ̂εS
, σ̂εT

, σ̂εR
25, 11, 0 137, 54, 94

Parameters were estimated as suggested by Rocke and Durbin (2001).

This model was originally proposed for gene expression
microarrays, but it is also appropriate for array CGH experi-
ments with the modification that µR and µT are amounts
of reference and test genomic DNA rather than mRNA. The
parameters denoted by the subscript ‘s’ are characteristics of
the microarray spot and common to both reference and test
samples. The mean background intensities (α) are typically
estimated by microarray image analysis software and used to
compute estimates of test and reference signal intensities, xT

and xR , as follows:

xR = yR − α̂R xT = yT − α̂T .

We model the error in this background estimation, α̂, as an
additional normally distributed error term, εest, so that the
pre-log-ratio intensities are generated as:

xR = µReηS+ηR + εS + εR + εest

xT = µT eηS+ηT + εS + εT + εest.

Parameters for this model are estimated as suggested by
Rocke and Durbin (2001) for biological array CGH and gene
expression experiments (Table 1). Prior to noise addition,
test and reference intensities across each synthetic chromo-
some for all simulations are drawn from a normal distribution
with µ ∼ N(3980, 800), and the mean background intens-
ity is assumed to be 400 for test and reference samples with
εest ∼ N(0, 40). Regions of aneuploidy are synthetically pro-
duced by setting all affected genes’ test-to-reference ratio
(µT /µR) to 1.53 (prior to noise effects). Furthermore, to
model expression scenarios realistically, 10% of the genes
outside of aneuploidal regions are randomly set to over- or
under-expressed with no spatial correlation.

Choice and performance of window
significance test
We first address the question of choosing the window signi-
ficance test for our framework. We consider three window

3 As gene expression changes do not directly reflect DNA copy number, the
test-to-reference ratio for a gene that has been duplicated will not necessarily
be 2. We chose to set these ratios to 1.5 to provide a conservative evaluation
of our method.
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Fig. 3. ROC curves for sign test, mean test, coefficient of vari-
ance and combined tests with P -value cutoffs between 10−6 and
0.4. Performance was evaluated on synthetic data with simulated
50-gene aneuploidies and generated with σηR

, σηT
= 0.25; σηS

=
0.15; σεT

/αT , σεS
/αR , σεR

/0.5(αT + αR) = 0.2. A combined mean
and sign test shows the highest sensitivity at every false positive rate
(FPR) tested.

significance tests (sign test, mean test and coefficient of
variance test) and evaluate their performance on simulated
50-gene aneuploidies under varying P -value cutoffs (Fig. 3).
Under all conditions tested, the mean and coefficient of vari-
ance permutation tests perform overwhelmingly better than
the one-sample sign test, which is used by Crawley and
Furge (2002) and Haddad et al. (2002). However, when an
aneuploidy spans the majority of a chromosome, the mean
test, which is generally very specific, can falsely report the
remaining regions as significant based on permutation stat-
istics. This shortcoming of the permutation-based approach
can be overcome by combination with the simpler sign test.
This combined mean permutation and sign test scheme per-
forms best both in terms of specificity and sensitivity, and
is thus used in the rest of evaluation experiments. A sim-
ilar combination of the coefficient of variance test and the
sign test is less effective because the variance-based test
yields lower sensitivity due to the noisy characteristics of
microarray data.

Robustness evaluation
We also examine the performance of ChARM under vary-
ing noise conditions. The performance of the method is only
minimally affected by additive noise (ε parameters) (data not
shown). The effect of multiplicative error (η) in test and ref-
erence samples is shown in Figure 4. The sensitivity of the
algorithm is robust (≥0.9) to noise levels well above the bio-
logical range (Fig. 4A and Table 1), and the specificity ranges
from 1 to 0.94 for all noise parameters (data not shown).
Our method provides accurate edge placement at biologically

realistic noise levels (average edge coordinate error <8%)
(Fig. 4B). Edge coordinate error is defined as

� =
∑

i (|êi,1 − ei,1| + |êi,2 − ei,2|)
No. of identified aneuploidies

,

where parameters êi,1 and êi,2 refer to the edge estimates of the
ith prediction, and ei,1 and ei,2 are the known edge locations of
the synthetic aneuploidy. Both sensitivity and edge placement
error are more susceptible to multiplicative reference and test
noise than to shared spot noise.

To test for bias in our method’s performance toward par-
ticular aneuploidal segment sizes, we perform a similar noise
analysis across a range of typical lengths (data not shown). At
moderate biological noise levels (0.1), the algorithm identi-
fies even small segments (<10 genes) of copy number change
with very high specificity (>0.95). Under severe noise condi-
tions the sensitivity of the detection algorithm degrades quite
noticeably for very small aneuploidies (much less than 100
genes in length). However, the algorithm is able to detect lar-
ger copy number changes (>100 genes) even under high noise
conditions (σηT

10 times greater than typical biological noise)
with relatively high sensitivity. The edge coordinate errors
behave similarly, although with less degradation. Both effects
are due to the fact that separating signal from noise becomes
more difficult as the length of spatial correlation decreases.
Therefore, our scheme is robust to noise and can accurately
identify aneuploidy regions even under high noise conditions.

APPLICATIONS TO BIOLOGICAL DATA
We applied ChARM to the yeast deletion mutants’ gene
expression dataset of Hughes et al. (2000a) and to gene expres-
sion and array CGH data for breast cancer patients from
Pollack et al. (2002). The results, presented below, demon-
strate that our method can be successfully applied to both
gene expression and array CGH biological data for different
organisms. We outline known amplifications and deletions
that ChARM identifies and present some novel aneuploidies
we find as well.

Segmental aneuploidies in Saccharomyces
cerevisiae deletion mutants
We applied our method to the compendium of expression pro-
files of 300 S.cerevisiae deletion mutants and drug-treated
strains developed and previously analyzed for aneuploidies
by Hughes et al. (2000b). The analysis by Hughes et al.
emphasizes whole-chromosome copy number changes, and
they identify only two segmental aneuploidies based on gene
expression data, both of which are confirmed by array CGH4.
Our method identifies these confirmed segmental aneuploidies
(rpl20a�/rpl20a� and rad27�/rad27� strains) with high

4 Hughes et al. identified one additional segmental aneuploidy (in top3�)
based on array CGH. This aneuploidy is not reflected in the gene expression
data and thus cannot be identified by any gene expression analysis method.
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B.A.

Fig. 4. Effect of multiplicative noise on (A) sensitivity and (B) errors in edge coordinates (as percentage of total window size). Performance
of the scheme in identifying a 50 gene aneuploidal segment was evaluated under varying degrees of noise. σηS

was varied while the remaining
terms were fixed at 0.1. Similarly, σηT

, σηR
were varied with σηS

= 0.5. Biological noise is typically under 0.65 for σηS
and under 0.2 for

σηT
, σηR

(Table 1). P -value cutoffs were set at 10−3 and 10−2 for the sign and mean permutation tests respectively, and the tests were combined
as described previously. The detection scheme with the combined mean and sign window significance test identifies most windows (>90%)
with high accuracy in placement of edge coordinates (error <0.1%) and is robust to high levels of spot, test and reference noise (substantially
higher than noise levels common in biological data shown in Table 1).

confidence (rad27�/rad27�: sign test P -value of 10−5,
mean permutation test P -value of <10−4; rpl20a�/rpl20a�:
sign test P -value of 10−7, mean permutation test P -value
of <10−4).

In addition to confirming the segmental aneuploidies iden-
tified by Hughes et al., we identify a number of previously
unknown potential aneuploidal regions5, the top 100 (sign
test P -values of <10−3 and mean permutation test P -values
of <10−2) of which are pictured in Figure 5, and expres-
sion profiles of two are displayed in Figure 6. To assess the
biological significance of these results, we use biological mod-
els of mechanisms of chromosomal breakage and aneuploidy
formation in yeast. Chromosomal amplifications and deletions
in yeast are thought to arise through ectopic recombination
between homologous sequences, such as Ty transposons,
transposon-related long terminal repeats (LTRs) or tRNA
sequences (Infante et al., 2003). Thus, presence of trans-
posons, LTRs or tRNA sequences near the edges of a pre-
dicted aneuploidy region can serve as biological evidence
that the region in question truly contains an amplification
or deletion. In addition, increased chromosomal breakage
may be observed in the conserved Y′ areas at the ends of
the yeast chromosomes (Chan and Tye, 1983). Our ana-
lysis reveals that 73% of predictions presented in Figure 5
are significantly (P -value <0.1) closer to such homologous

5 Predictions that represented two adjacent occurrences of Ty transposons or
included centromeric regions were excluded from further analysis due to the
potential of cross-hybridization artifacts.

sequences than expected by chance or are located in the Y′
regions. These predictions likely correspond to novel seg-
mental aneuploidies, while other predictions may represent
array artifacts or aneuploidies that arose through an alternative
molecular mechanism.

In yeast deletion mutant strains undergoing multiple
divisions, an aneuploidy that compensates for or masks
the deleted gene’s phenotype could confer a selective
advantage (Dunham et al., 2002). For example, growth
defects (Dolinski et al., 2004, http://db.yeastgenome.org/
cgi-bin/SGD/locus.pl?locus=anp1). caused by the deletion
of anp1 (Fig. 6A), an endoplasmic reticulum (ER) protein
with a role in retention of glycosyltransferases in the Golgi
(Jungmann and Munro, 1998), may be alleviated by the amp-
lification of the region on chromosome II that includes SFT2,
a gene involved in ER–Golgi transport (Conchon et al., 1999).
The hdf1 deletion mutant also exhibits a compensatory mech-
anism. Hdf1 protein functions as a heterodimer with the Ku
protein in maintaining normal telomere length and structure,
but cells can maintain telomeres in the absence of telomerase
through a recombination-dependent ‘survivor’ pathway that
replicates Y′ regions of chromosomes (Lendvay et al., 1996).
Indeed, we identify amplifications in the Y′ region of chro-
mosomes II, VI and XII in this hdf1�/hdf1� strain.

Identification of aneuploidies in breast
cancer gene expression and array CGH data
Genomic instability is thought to play a major role in onco-
genesis, and breast tumors specifically are known to harbor
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Fig. 5. Chromosomal maps showing a subset of predicted aneuploidies (sign test P -values of <10−3 and mean permutation test P -values
of <10−2) and biologically relevant mapped chromosomal elements. Aneuploidies are color-coded: red indicates amplification and green
indicates deletion. Predictions shown in different rows on the same chromosome correspond to different yeast strains (e.g. Chr II), and
multiple predications at the same chromosomal coordinate represent identical aneuploidies found in multiple strains (e.g. Chr XI). Proximity
of predictions to LTR, transposon and tRNA elements was evaluated through 10 000 random placements of same-sized regions on the
chromosomal map and through finding the proportion of random regions with shorter distance (drand) to homologous elements than real
predictions (dobs) [p = count(drand < dobs)/count(rand placements)].

multiple aneuploidies (Gollin, 2004; Pollack et al., 2002).
Using ChARM, we analyzed array CGH (Pollack et al., 2002)
data for 44 breast tumors and the corresponding gene expres-
sion studies for 37 of these samples (Sorlie et al., 2003).
Our method identifies the known ‘hot spots’ of amplifica-
tions and deletions in breast cancer (Hyman et al., 2002;
Pollack et al., 2002), including multiple cases of deletions
on 13q that include tumor suppressor protein Rb1 and on
17p that span tumor suppressor protein Tp53. Deletion of
either Rb1 or Tp53 is known to cause chromosomal instability,
and we do identify multiple additional aneuploidies in tumors
with predicted Rb1 or Tp53 deletion (Lentini et al., 2002).
We also identify a known 17q amplification that includes
proto-oncogene ERBB2/HER2 (Menard et al., 2000).

One advantage of our method is the ability to make pre-
dictions based independently on array CGH or gene expres-
sion data. Overlaps in these independent predictions can be
used to focus on potentially functionally relevant segmental

aneuploidies. The two most striking overlap regions both
include immune system proteins: genes that encode class
II major histocompatability complex proteins (MHCII) on
chromosome 6 and immunglobulin heavy chain genes on chro-
mosome 14 (Fig. 7). It is surprising to find such expression
levels of these immune proteins in the tumor samples. One
concern is that the data reflect the presence of a lymphocytic
infiltrate in tumor tissue, however in such a case one would
not expect correlated amplification data. Immune system
effects on tumor progression are relatively poorly under-
stood; a key question is why some tumors are recognized and
destroyed by the immune system while others successfully
proliferate.

Immunoglobulins, also known as antibodies, are secretable
proteins produced by mature B lymphocytes. These molecules
play an essential part in the adaptive immune system by bind-
ing and neutralizing foreign particles. As immunoglobulin
gene expression typically occurs only in B lymphocytes

3540



Detection of aneuploidies from microarray data

E
xp

re
ss

io
n

(l
og

ra
ti

o)
anp1/wtA. B. prb1/wt0.6

Fig. 6. Gene expression levels plotted by chromosomal location in example segmental aneuploidies. (A) anp1 (chromosome II, sign test
P -value of <10−10, mean permutation test P -value of 10−3) and (B) prb1 (chromosome III, sign test P -value of <10−10, mean permutation
test P -value of <10−4) heterozygous deletion mutants. Aneuploidies predicted by our method are identified by arrows and correspond to
spatial expression biases.
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Fig. 7. Overlapping amplification predictions in array CGH and gene
expression microarray data for breast cancer. Amplifications pre-
dicted from gene expression data are shown below the chromosomal
map, those predicted from array CGH data are shown above the map.

after directed germline rearrangement, immunoglobulin
heavy chain overexpression and amplification of the cor-
responding region is potentially an important finding, but
requires further investigation into the functional status of the

transcripts. MHCII is another key component of adaptive
immune response—it is a membrane protein whose primary
role is the presentation of protein fragments for immune
recognition. However, MHCII presentation of foreign pro-
teins activates a response optimally in the presence of other
co-stimulatory molecules, and MHCII overexpression out-
side of this immune context may lead to immune toler-
ance, a condition when tumors do not activate immune
response (Hardwick, 1998; Hendrickson et al., 2002). One
theory is that malignant tumors may induce tolerance with
out-of-context immune stimuli, thereby evading immune
response, which allows them to grow and proliferate (Mapara
and Sykes, 2004). No definitive evidence for this the-
ory exists, but these effects have been observed in model
systems (Ostrand-Rosenberg et al., 1996; Byrne and Hal-
liday, 2003) and MHCII overexpression has been associ-
ated with poor prognosis in melanomas (Brocker et al.,
1985). Experimental verification of our findings may provide
novel evidence of induction of immune tolerance in tumors.

CONCLUSIONS
We have demonstrated that segmental aneuploidies can be
identified based on array CGH or gene expression microar-
ray data and have presented a robust statistical method that
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can accurately locate aneuploidies in biological data. Evalu-
ations on synthetic and biological data show that our method
is robust to experimental noise and aneuploidy size and
thus is appropriate for general and automated application
to microarray datasets. ChARM allows routine screening
of gene expression data for aneuploidies and is sensitive
enough to detect small statistically significant signal biases
in mixed populations of cells. It is important to note that
gene expression does not always reflect copy number and,
furthermore, algorithms based on gene expression data alone
cannot discriminate between spatial expression biases that
arise from DNA abnormalities and biases that are the res-
ult of spatial co-regulation or array artifacts. Our method can
identify spatial expression biases due to either aneuploidies
or technology artifacts and thus can be used as a general
screening tool for gene expression microarray data. In cases
when ChARM is used to screen for aneuploidies only, gene
expression microarray data should be normalized for spe-
cial artifacts prior to applying ChARM (Yang et al., 2002).
Applying ChARM to biological data, we have identified
multiple previously unknown aneuploidies in public yeast
gene expression data, several of which are supported by
biological evidence, and potential amplification and over-
expression of immune genes in breast cancer. These predic-
tions should be further evaluated through targeted laboratory
investigation.
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